User:Cristinac/Day2: Difference between revisions

From XPUB & Lens-Based wiki
No edit summary
No edit summary
Line 1: Line 1:
Day four
CLiPS
Computational Linguistics & Psycholinguistics


Deconstructing Harry
Guy de Pauw, Walter Daelemans, Tom De Smedt
Guttorm Guttormsgaard
Asger Jorn


-Chomsky’s work on linguistics: language acquisition device.
-extracting knowledge from data


metadata of information; data gallery; average colour of the image, timestamp, face recognition, average colour data, what could a photo gallery mean?
Natural language processing
Gaussian blur (many image treatments begin with)  
most information is in unstructured data (text)
derivates
data in digital form
big data (too big to handke with conventional means)


>90% of currently available data was created in the last 2 years


http://programmingcomputervision.com/
Problems: accuracy levels, speed, fundamental problems (form-meaning relation, semantics, world knowledge)


1 objective knowledge (machine reading): recognising which word types are used
2 subjective knowledge: sentiment, opinion, emotion, modality, (un)certainty. especially with the advent of social media
3 meta knowledge: authorship, author attributes (educational level,age,gender,personality,region,illness), text attributes (date of writing,..): of the, on the, has been
tf IDF


https://en.wikipedia.org/wiki/Tf%E2%80%93idf


Schwartz HA Eichstaedt JC 2013 Personality, Gender, and Language in the age of Social Media - controversial
http://www.ppc.sas.upenn.edu/socialmediapub.pdf


a gradient has a magnitude and a direction (like a vector)
women using more pronouns, men use more determiners and quant ors
-relational language - women
-informative language - men


Search By Image - Sebastian Schmieg
Lexical / morphological, syntactic reasons for bad translations
ambiguity. example: snappy little girl’s school, adding only in a sentence, all students know two languages (the same languages?)
paraphrase. inference.
ex. The mayors prohibited the students to demonstrate because they preached the revolution (who is they?)


Control detection
Language processing pipeline: text input to meaning output
contours that are detected are not continuous, but they are fragments and there is an extra step that determines what kind of fragments got together and create an extra step
Deep Understanding
text input —>
tokenization/normalization
lemmatization (reducing words to their meaning in the dictionary)
part-of-speech tagging: determining what meaning/types of words they are
shallow parsing (who is doing what to whom)
modality/negation
word sense disambiguation (ex bank)
semantic role labelling
named-entity recognition
co-reference resolution
—>meaning output


Volterra Kernel Training/Identification System
Text mining (shallow understanding)
contents: extract facts (concepts and relations between concepts) and opinions
meta-data




http://www.sciencedirect.com/science/article/pii/S0952197612002461
Text mining (Marti Hearst 2003)
statistical, not logical model of the face
Don Swanson 1981: medical hypothesis generation
behind the algorithm is a manual work that is done by people repeatedly
every detail of the face is annotated
labour conditions


Training data to feed the classifier : no image exists in isolation
example: deception
False positive : images that have been selected as containing a face when they don’t


not everyone is equally successful in deceiving others


https://en.wikipedia.org/wiki/Ghostwriter
Liars use, fewer exclusive words, fewer self and other references, fewer time related words, fewer tentative  words, more space related words, more motion verbs, more negations, more negative and positive emotions


Cornell University study (Ott et al 2011)


cvdazzle.com - techniques to avoid face detection
Human judges fail to make the distinction (truth bias), low inter annotator agreement, 2 out of 3 perform at chance level, classifier succeeds (90% accurate). cues: more superlatives, deceptive: imaginative rather than informative language
however. there are more than 1 differentiations between the text sources


the same algorithm can be fed with any kind of statistical data; ex: banana recognition
Text categorisation Documents —> Documents—>classes                                  —>text classifier
sort by face
                                                                            —>linguistically analysed data   —>text classifier


http://www.cise.ufl.edu/~arunava/papers/cvpr09.pdf
looking at what defines an author, and not what he writes about
Hans Moravec diagram


https://en.wikipedia.org/wiki/Volterra_series


Sentiment mining
sentiment lexicon, classifiers and annotation


politiekebarometer.be
www.clips.uantwerpen.be/cqrellations


CSV-no space for metadata, no authorship information
https://okfn.org/


frictionless data
SAS, R, Python
http://centraldedados.pt/
http://www.clips.ua.ac.be/pages/pattern




from pattern.web import Twitter
from pattern.en import sentiment


adding “I think” at the end of every paragraph
for tweet in Twitter(language=“en”).search(“#obama”):
print tweet.text
csp files
data sheet functionality of pattern


iPython
 
Classifiers:
ex: predict the sentiment polarity, predict the position of a face
 
 
training document, class event, bag-of-words
word bigrams,
character trigrams. example: wrong spelling of “exellent”: exe, xel, ell, len, ent
word lemmas
tokenization: Goed!=goed+!
 
 
Annotation=gold standard
 
online learning option
 
annotation process
 
 
 
 
 
concept clusters
 
 
 
Deep Learning
Based on neural networks
encode world knowledge into our vocabulary
queen=king-man+woman
 
word2vec (not deep learning, same principle, similar additional increase) - application
applications: language technology, speech technology, image recognition, recommender systemen
 
 
 
 
 
RUBENS CODE
 
CODE 1:
from pattern.web import PDF
from pattern.en import sentiment, parse
from pattern.db import Datasheet
 
ds = Datasheet()
 
f = open('Bible.pdf')
pdf = PDF(f)
ds.append((pdf.string, 'Bible'))
 
f = open('quran.pdf')
pdf = PDF(f)
ds.append((pdf.string, 'Quran'))
 
ds.save('bible_quran.csv')
 
 
print 'saved!'
 
CODE 2:
from pattern.web import URL, plaintext
from pattern.vector import Document, NB, KNN, SLP, SVM, POLYNOMIAL
from pattern.db import csv
from pattern.en import parse
import math
 
# classifier = SVM(kernel=POLYNOMIAL, degree=10)
classifier = SVM()
 
print 'TRAINING:'
for text, book in csv('bible_quran_torah.csv'):
        length = len(text)
        # part_len = int(math.floor(length/10))
        # print book
        # # print part_len
        # for i in xrange(1,10):
        #        print i
        #        s = text[i*part_len : i*part_len + part_len]
        #        v = Document(parse(s, tokenize=True, lemata=True, tags=False, relations=False, chunks=False), type=book, stopwords=True)
        #        classifier.train(v)
       
        v = Document(parse(text, tokenize=True, lemata=True, tags=False, relations=False, chunks=False), type=book, stopwords=True)
        classifier.train(v)
 
print 'CLASSES:',classifier.classes
 
print 'RESULTS\n======'
 
return_discrete = True
 
print "OBAMA"
s = open("speech_obama.txt").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)
 
print "OSAMA"
s = open("speech_osama.txt").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)
 
print "MALCOLM X"
s = open("speech_malcolmx").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)
 
print "ANITA"
s = open("essay_anita.txt").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)
 
print "POPE"
s = open("speech_pope.txt").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)
 
print "NETANYAHU"
s = open("speech_netanyahu.txt").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)
 
print "LUTHER KING"
s = open("speech_luther-king.txt").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)
 
print "CQRRELATIONS"
s = open("cqrrelations.txt").read().replace('\n','')
s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False)
print classifier.classify(Document(s), discrete=return_discrete)

Revision as of 12:53, 27 January 2015

CLiPS Computational Linguistics & Psycholinguistics

Guy de Pauw, Walter Daelemans, Tom De Smedt

-Chomsky’s work on linguistics: language acquisition device. -extracting knowledge from data

Natural language processing most information is in unstructured data (text) data in digital form big data (too big to handke with conventional means)

>90% of currently available data was created in the last 2 years

Problems: accuracy levels, speed, fundamental problems (form-meaning relation, semantics, world knowledge)

1 objective knowledge (machine reading): recognising which word types are used 2 subjective knowledge: sentiment, opinion, emotion, modality, (un)certainty. especially with the advent of social media 3 meta knowledge: authorship, author attributes (educational level,age,gender,personality,region,illness), text attributes (date of writing,..): of the, on the, has been tf IDF

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Schwartz HA Eichstaedt JC 2013 Personality, Gender, and Language in the age of Social Media - controversial http://www.ppc.sas.upenn.edu/socialmediapub.pdf

women using more pronouns, men use more determiners and quant ors -relational language - women -informative language - men

Lexical / morphological, syntactic reasons for bad translations ambiguity. example: snappy little girl’s school, adding only in a sentence, all students know two languages (the same languages?) paraphrase. inference. ex. The mayors prohibited the students to demonstrate because they preached the revolution (who is they?)

Language processing pipeline: text input to meaning output Deep Understanding text input —> tokenization/normalization lemmatization (reducing words to their meaning in the dictionary) part-of-speech tagging: determining what meaning/types of words they are shallow parsing (who is doing what to whom) modality/negation word sense disambiguation (ex bank) semantic role labelling named-entity recognition co-reference resolution —>meaning output

Text mining (shallow understanding) contents: extract facts (concepts and relations between concepts) and opinions meta-data


Text mining (Marti Hearst 2003) Don Swanson 1981: medical hypothesis generation

example: deception

not everyone is equally successful in deceiving others

Liars use, fewer exclusive words, fewer self and other references, fewer time related words, fewer tentative words, more space related words, more motion verbs, more negations, more negative and positive emotions

Cornell University study (Ott et al 2011)

Human judges fail to make the distinction (truth bias), low inter annotator agreement, 2 out of 3 perform at chance level, classifier succeeds (90% accurate). cues: more superlatives, deceptive: imaginative rather than informative language however. there are more than 1 differentiations between the text sources

Text categorisation Documents —> Documents—>classes —>text classifier

                                                                           —>linguistically analysed data    —>text classifier

looking at what defines an author, and not what he writes about Hans Moravec diagram


Sentiment mining sentiment lexicon, classifiers and annotation

politiekebarometer.be www.clips.uantwerpen.be/cqrellations


SAS, R, Python http://www.clips.ua.ac.be/pages/pattern


from pattern.web import Twitter from pattern.en import sentiment

for tweet in Twitter(language=“en”).search(“#obama”): print tweet.text csp files data sheet functionality of pattern


Classifiers: ex: predict the sentiment polarity, predict the position of a face


training document, class event, bag-of-words word bigrams, character trigrams. example: wrong spelling of “exellent”: exe, xel, ell, len, ent word lemmas tokenization: Goed!=goed+!


Annotation=gold standard

online learning option

annotation process



concept clusters


Deep Learning Based on neural networks encode world knowledge into our vocabulary queen=king-man+woman

word2vec (not deep learning, same principle, similar additional increase) - application applications: language technology, speech technology, image recognition, recommender systemen



RUBENS CODE

CODE 1: from pattern.web import PDF from pattern.en import sentiment, parse from pattern.db import Datasheet

ds = Datasheet()

f = open('Bible.pdf') pdf = PDF(f) ds.append((pdf.string, 'Bible'))

f = open('quran.pdf') pdf = PDF(f) ds.append((pdf.string, 'Quran'))

ds.save('bible_quran.csv')


print 'saved!'

CODE 2: from pattern.web import URL, plaintext from pattern.vector import Document, NB, KNN, SLP, SVM, POLYNOMIAL from pattern.db import csv from pattern.en import parse import math

  1. classifier = SVM(kernel=POLYNOMIAL, degree=10)

classifier = SVM()

print 'TRAINING:' for text, book in csv('bible_quran_torah.csv'):

       length = len(text)
       # part_len = int(math.floor(length/10))
       # print book
       # # print part_len
       # for i in xrange(1,10):
       #         print i
       #         s = text[i*part_len : i*part_len + part_len]
       #         v = Document(parse(s, tokenize=True, lemata=True, tags=False, relations=False, chunks=False), type=book, stopwords=True)
       #         classifier.train(v)
       
       v = Document(parse(text, tokenize=True, lemata=True, tags=False, relations=False, chunks=False), type=book, stopwords=True)
       classifier.train(v)

print 'CLASSES:',classifier.classes

print 'RESULTS\n======'

return_discrete = True

print "OBAMA" s = open("speech_obama.txt").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)

print "OSAMA" s = open("speech_osama.txt").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)

print "MALCOLM X" s = open("speech_malcolmx").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)

print "ANITA" s = open("essay_anita.txt").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)

print "POPE" s = open("speech_pope.txt").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)

print "NETANYAHU" s = open("speech_netanyahu.txt").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)

print "LUTHER KING" s = open("speech_luther-king.txt").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)

print "CQRRELATIONS" s = open("cqrrelations.txt").read().replace('\n',) s = parse(plaintext(s), tokenize=True, lemata=True, tags=False, relations=False, chunks=False) print classifier.classify(Document(s), discrete=return_discrete)