Unicode: Difference between revisions

From XPUB & Lens-Based wiki
No edit summary
No edit summary
Line 68: Line 68:
for line in f:
for line in f:
     print line.encode("latin-1")
     print line.encode("latin-1")
</source>
=== Checking the encoding of a file ===
You can use the file command to display the encoding of a file, ''if'' it can be determined.
<source lang="bash">
file ducasse_poésies.txt
</source>
<source lang="bash">
ducasse_poésies.txt: ISO-8859 English text, with CRLF line terminators
</source>
</source>

Revision as of 12:01, 31 March 2009

Python

Everything described here applies to Unicode in Python versions up to 2.6. In Python 3, a lot of good changes have been made (namely all strings are Unicode, and the default encoding Python assumes is utf-8). But before everything works in Python 3...

I have always found the Unicode methods confusing. The confusion, for me, lay in confusing the sense of encoding / decoding; Initially I thought of "encoding" as meaning "making" Unicode, and "decoding" as going back out of Unicode. In fact, this is exactly opposite. A "Unicode" string in Python could better be thought of as "un-coded" or at least "coding-neutral".

Encoded text is that which has already been translated into actual bytes of data with a particular encoding scheme, like "latin-1" or "utf-8". Note here that "utf-8" is a particular encoding defined as part of the Unicode standard, and thus not a "Unicode" string in the Python sense. Encoded text is "dumb" in the sense that the raw bytes of data have no inherent sense of how they have been encoded and working with them is "dangerous" in that you need to be aware of the encoding that has been employed -- as mixing different schemes, or using functions that might make assumptions about format other than what you have in mind, could produce wrong results. For this reason, Python dutifully, though at the most inconvenient of times, complains in the form of Unicode exceptions, when something less than crystal clear has been attempted.

In contrast, one decodes to turn "raw bytes" bytes of data into a proper Unicode object in Python. The resulting Unicode object is "smart" in the sense that in addition to the actual text data, the format is known. In this way, functions that work with Unicode objects are able to negotiate differences between formats, translating as necessary to say splice together parts of texts.

The "Unicode Lifecycle" has been usefully summarized by Kumar McMillan in a talk at PyCon 2008 [1] as follows:

The golden rules

Decode Early

Turn raw bytes into Unicode as soon as you get them. Use the string decode function, along with the format you know the bytes have been encoded with, based on the source.

str = get_from_latin1_encoded_database("name")
ustr = str.decode("latin-1")

Unicode everywhere

As long as everything you are using is Unicode, Python should be able to handle everything without a single dreaded Unicode Exeception.

letter = u"Chère Madame %s ..." % ustr

Encode late

Turn Unicode back into raw bytes for output. Use the encode method of the Unicode object, and give the format desired/required by the output (a Terminal, a database, a webpage).

# output as part of a utf-8 encoded webpage...
print "Content-type: text/html; charset=utf-8"
print
print letter.encode("utf-8")

Reading from a file

In Python, the codec module has a file open function that takes an encoding option to indicate the format of the file. This option simply sets how python interprets the file data, it doesn't actively apply any coding or do any kind of conversion (yet). It is up to you to know/ensure the format of the file you are opening.

import codecs
f = codecs.open("myfile.txt", encoding='utf-8')
for line in f:
    print repr(line)

Note that in the above example, calling the repr function means that the unicode gets displayed with escaped special characters (and thus will display with no problems on any kind of Terminal as it's ASCII.

To show the actual contents of the file, you would then encode the text to match the encoding scheme of your Terminal, so in the (likely) case that your terminal is (also) set to utf-8:

import codecs
f = codecs.open("myfile.txt", encoding='utf-8')
for line in f:
    print line.encode("utf-8")

Or if your terminal was "latin-1":

import codecs
f = codecs.open("myfile.txt", encoding='utf-8')
for line in f:
    print line.encode("latin-1")

Checking the encoding of a file

You can use the file command to display the encoding of a file, if it can be determined.

file ducasse_poésies.txt
ducasse_poésies.txt: ISO-8859 English text, with CRLF line terminators