User:Thijshijsijsjss/Pen Plotting Panache/Plotillism

From XPUB & Lens-Based wiki
< User:Thijshijsijsjss‎ | Pen Plotting Panache
Revision as of 22:17, 24 May 2024 by Thijshijsijsjss (talk | contribs) (Add details to actual technique used)

Stippling is a drawing technique by which details are captured by placing points in varying densities and is frequently used in the impressionistic pointillism. This page describes a workflow to convert a digital image to a pointillism version that can be pen plotted.

Steps of Weighted Voronoi Stippling visualized (please, enjoy the typo)
Stochastically chosen seed points
Paths of seed points during iterative relaxation
Relaxed seed points after 50 iterations
Relaxed seed points, no background
Relaxation visualized
Pen plotted pointillism plot of Radiohead's A Moon Shaped Pool (mirrored, 400x400px, 20000 points, 50 iterations, 150 threshold)

Technique

This plotillism software is based on the 2002 paper by Secord. This paper suggests the following strategy:

  1. Randomly place N seed points on your canvas. There are many ways to do this.
  2. Create the Delaunay diagram for these seed points: the unique triangulation such that the no triangles circumcircle contains any points)
  3. Create the Voronoi diagram for these seed points: polygons that represent the areas that contain all coordinates that share the seed point they're closest to. This is the dual graph of the Delaunay diagram (i.e. the vertices in the Voronoi diagram are the centers of the Delaunay circumcircles).
  4. Apply Lloyd's Algorithm (Voronoi iteration) by iteratively moving the seed points to the centers of the Voronoi polygons*. This can be approximated by the average of the polygon vertices, or better yet be calculated (see Paul Burke's reference).
  5. Use these relaxed points for 'pointillism'

*Note: for our purposes, we don't simply want to relax all points. This would ultimately lead to a uniform distribution. Instead, we want to base the relaxation on the brightness values of the image we feed in. The software uses this approach:

  1. Randomly place N seed points on your canvas stochastically: choose a random location x,y, produce a random number R between 0 and thresh, and place a point there if and only if R > brightness(x,y). This stochastic approach produces quite 'good' initial positions, i.e. the points are relatively close to their brightness-weighted equilibrium position (first image). O(N) complexity.
  2. Create 'reversed' Voronoi diagrams by looping over all pixels, and assign the closest seed point to it. Note that we have skipped the Delaunay triangulation. Working with polygons is difficult. O(W*H*N) complexity.
  3. Relax the seedpoints based on brightness: for every seedpoint, fetch the pixels assigned to it and calculate their weighted centroid as the new seedpoint position. O(N*W*H) complexity.

References