User:Zpalomagar/HACKPACT

From XPUB & Lens-Based wiki

#H1_CHALLENGE CHANGE.ORG DISPLAY

The starting point of this proposal is looking for online spaces where people or communities can publish their suggestions or requests. Taking as reference one of the most important platforms all over the world in order to achieve this goal(change.org), this hackpact develop an experiment challenging the display of the conventional structure that is followed in the platform. In order to work with visual content, I’m going to extract just the visual elements that are display in the website (you can only update one picture on each petition).

The traditional representation method introduced by Otto Neurath ,when isotypes were created, said that in order to facilitate the lecture and comparison of quantitative data, you must repeat an item as many times as you need proportionally to the amount it represents. In this example each photo represents 1000 people supporting a petition.

With this alternative HTML structure the information that is transmitted to the reader is purely visual and you can infer people interest just with a glance and notice the difference in support and relevance between them.

Current Change.org display
Modified Change.org display

#H2_LOOKING AT THE WORLD WITH EMOJIS

This hackpact has the goal of experimenting python as a tool to read data (cdv files) and visualise it. The database used for this experiment is a cdv file with population of every country in different years. With this piece of code we can read this data and create lists of the information that we are interested in. With this translation of data we are able to extract this quantitative information and work with that as if it was a python element.

I am going to use two additional libraries for python. On the one hand pandas library in order to read data from the cdv file and on the other emoji library to use the universal emoji library for visualise the result.

Each emoji represent 1 million of citizens so the strategy used to display the information is repetition in the same way as I did in the previous example.

I did this experiment using Jupiter Notebook in order to have momentary results that allowed me to debug the code and keep the previous versions there with annotations

FULL EMOJI LIST

Jupyter Notebook process


Netherlands Population
1952🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1957🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1962🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1967🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1972🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1977🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1982🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1987🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1992🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
1997🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
2002🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪
2007🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪🥪


import pandas as pd
import emoji
data = pd.read_csv ('countries.csv')
netherlands = data[data.country == 'Netherlands']
l_netherlandspopulation = list(netherlands.population / 10**6)
l_netherlandsyear = list(netherlands.year)
print("Netherlands Population")
n=0
l=0
while l<len(l_netherlandspopulation):
    print(l_netherlandsyear[n], end = '')
    for i in range(int(l_netherlandspopulation[n])):
        print(emoji.emojize(":sandwich:"), end="")
    print()
    n=n+1
    l=l+1
  • Some other countries:

Spain Population
1952💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1957💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1962💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1967💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1972💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1977💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1982💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1987💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1992💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
1997💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
2002💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃
2007💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃💃

Cuba Population
1952🌴🌴🌴🌴🌴🌴
1957🌴🌴🌴🌴🌴🌴
1962🌴🌴🌴🌴🌴🌴🌴
1967🌴🌴🌴🌴🌴🌴🌴🌴
1972🌴🌴🌴🌴🌴🌴🌴🌴
1977🌴🌴🌴🌴🌴🌴🌴🌴🌴
1982🌴🌴🌴🌴🌴🌴🌴🌴🌴
1987🌴🌴🌴🌴🌴🌴🌴🌴🌴🌴
1992🌴🌴🌴🌴🌴🌴🌴🌴🌴🌴
1997🌴🌴🌴🌴🌴🌴🌴🌴🌴🌴
2002🌴🌴🌴🌴🌴🌴🌴🌴🌴🌴🌴
2007🌴🌴🌴🌴🌴🌴🌴🌴🌴🌴🌴

Finland Population
1952⛄⛄⛄⛄
1957⛄⛄⛄⛄
1962⛄⛄⛄⛄
1967⛄⛄⛄⛄
1972⛄⛄⛄⛄
1977⛄⛄⛄⛄
1982⛄⛄⛄⛄
1987⛄⛄⛄⛄
1992⛄⛄⛄⛄⛄
1997⛄⛄⛄⛄⛄
2002⛄⛄⛄⛄⛄
2007⛄⛄⛄⛄⛄

#H3_HOW DOES THE NETHERLANDS LOOK IN THE WORLD?

I’ve started to research how to draw maps based on GeoJSON files and how can you modified them. Based in D3 script I’ve experiment different projections that you can use in order to represent world cartographies. Because the standard settings are not the only option I did this small experiment highlighting the Netherlands in each map and observing how the dimension and the position of the country change. All this projections are real and true because it doesn’t exist an universal way of transforming a sphere into a plan just consensus or tradition but why not to experiment with that?.

In order to change the projection of the maps we need to add a couple of scripts (d3-array and d3-geo).


geoAzimuthalEqualArea
geoAzimuthalEquidistant
geoConicConformal
geoConicEqualArea
geoConicEquidistant
geoEqualEarth
geoEquirectangular
geoGnomonic
geoMercator
geoOrthographic
geoStereographic
geoTransverseMercator


<!DOCTYPE html>
<html>

<head>
  <title>Map projection experiments</title>
  <meta charset="utf-8">
  <script src="https://d3js.org/d3.v4.min.js"></script>
  <script src="https://d3js.org/topojson.v2.min.js"></script>
  <script src="https://d3js.org/d3-array.v1.min.js"></script>
  <script src="https://d3js.org/d3-geo.v1.min.js"></script>
  
  <style>
    path {
      fill: #FF1493;
    }

    .graticule {
      fill: none;
      stroke: none;
      stroke-width: .5px;
    }

    .foreground {
      fill: #00FF7F;
      stroke: none;
    }
  </style>
</head>

<body>
  <svg width="960" height="600"></svg>
  <script>

    const svg = d3.select("svg")
    const myProjection = d3.geoEqualEarth()
    const path = d3.geoPath().projection(myProjection)
    const graticule = d3.geoGraticule()

    function drawMap(err, world) {
      if (err) throw err

      svg.append("path")
        .datum(graticule)
        .attr("class", "graticule")
        .attr("d", path);

      svg.append("path")
        .datum(graticule.outline)
        .attr("class", "foreground")
        .attr("d", path);

      svg.append("g")
        .selectAll("path")
        .data(topojson.feature(world, world.objects.countries).features)
        .enter().append("path")
        .attr("d", path);
    }

    d3.json("https://unpkg.com/world-atlas@1.1.4/world/110m.json", drawMap)
    

  </script>
</body>

</html>

#H4_HIERARCHICAL SETTINGS

When I started to dive a little deeper into the possibilities of visualization with d3 I came across many predefine layouts of hierarchical structures. What does it mean? Are we being pressured to represent our data hierarchically?. Traditionally diagrams and maps have been understood as element of power, as tools for represent powerful structures and this is another example that it’s true. The goal of this Hackpact is to explore how is the process of representing hierarchical structures with D3, different layout of visual possibilities and how is the data that represent this information.

In order to develop a dataset I built a simple Json file that express the hierarchical structure of a company that have a Chief Executive whose children are the Managers whose children are the Managers assistant whose children are the Staff.


Tree hierarchical structure
Packed circles hierarchical structure
Sunburst hierarchical structure


<!DOCTYPE html>
<html>
<head>
	<meta charset="utf-8">
	<title>D3 tutorial</title>
	<script src='https://d3js.org/d3.v3.min.js'></script>
</head>
<body>

	<script>

		var canvas = d3.select("body")
			.append("svg")
			.attr("width", 500)	
			.attr("height", 500)
			.append("g")
				.attr("transform", "translate(50,50)");

		// with cluster layout all data that don't have children are in the same level
		// var tree = d3.layout.cluster()
		var tree = d3.layout.tree()
			.size([400,400]);

		d3.json("hierarchicalstructure.json", function(data){

			var nodes = tree.nodes(data);

			var links = tree.links(nodes);

			var node = canvas.selectAll("node")
				.data(nodes)
				.enter()
				.append("g")
					.attr("class", "node")
					// to flip the nodes you just have to change the x and the y
					.attr("transform", function (d) {return "translate(" + d.y + "," +d.x + ")"})

				node.append("circle")
					.attr("r", 5)
					.attr("fill", "dodgerblue");	

				node.append("text")
					.text(function(d) {return d.name;})
					.attr("transform", "translate(0,-8)")
					.attr("font-family","sans-serif")
					.attr("font-size","10px")  
					.attr("text-anchor","middle")  
					.attr("fill","black");    				


				var diagonal = d3.svg.diagonal()
					// To rotate the paths
					.projection(function (d) {return [d.y, d.x];});

				canvas.selectAll("link")
					.data(links)
					.enter()
					.append	("path")
					.attr("class", "link")
					.attr("fill", "none")
					.attr("stroke", "deeppink")
					.attr("d", diagonal);

		})	

	</script>

</body>
</html>

#H5_EXPLORING D3

This Hackpact has the goal of experimenting the visualisation options in D3 and HTML so the process is to repeat the visualisation doing in Hackpact number three trying to read and visualise the data with D3 in this case and HTML, mainly testing the loop possibilities and how repetition can be materialised.

Output D3 and HTML
<script>
		function times (text, n) {
		var ret = '';
		for (var i=0; i<n; i++) {ret += text;}
		return ret;
		}

		d3.csv("countries_af.csv", function(data) {

                d3.selectAll("p")
			.data(data)
			.enter()
			.append("p")
			.html(function(d) {
				return times(d.year, d.population/1000000)
		        })
                })
</script>

#H5_FINDING GEO DATA IN TWITTER USING TWEEPY

Twitter is a platform where people can share with freedom claims, initiatives or just thoughts. Understanding what's happening in Twitter means to understand a society. If we try to link that with cartographies we need to establish geographical links between people who are publishing a tweet and location. There are some tools to scrape twitter, in this Hackpact I'm going to explore Tweepy. Tweepy is a python library that allows us to receive stream information of twitter in a Json format.

Before running this script I had to create a developer account on Twitter and create an app in which you define what are you going to do with this data. When I completed this process I had my API KEYS and TOKEN KEYS that are saved on a different file.

from tweepy.streaming import StreamListener
from tweepy import OAuthHandler
from tweepy import Stream
import credentials

class StdOutListener(StreamListener):
    def on_data(self, data):
        print(data)
        return True

    def on_error(self, status):
        print(status)

if __name__ == "__main__":
    auth = OAuthHandler(credentials.API_KEY, credentials.API_SECRET_KEY)
    auth.set_access_token(credentials.ACCESS_TOKEN, credentials.ACCESS_TOKEN_SECRET)
    listener = StdOutListener()
    stream = Stream(auth, listener)
    stream.filter(track=['zpalomagar'])

My first goal es to check what type of geo-information can I obtain from each Tweet. I'm going to use this python script in order to print in the terminal the Tweets that anyone post which include the word "zpalomagar". When you publish a tweet with your phone you can add geo-information including a location (it doesn't have to be your real location). The geo-information that we receive looks like this:

"place":{
      "id":"ea0a61fa0c646676",
      "url":"https:\/\/api.twitter.com\/1.1\/geo\/id\/ea0a61fa0c646676.json",
      "place_type":"city",
      "name":"R\u00f3terdam",
      "full_name":"R\u00f3terdam, Holanda",
      "country_code":"NL",
      "country":"Holanda",
      "bounding_box":{
         "type":"Polygon",
         "coordinates":[
            [
               [
                  3.941836,
                  51.842113
               ],
               [
                  3.941836,
                  52.006802
               ],
               [
                  4.601379,
                  52.006802
               ],
               [
                  4.601379,
                  51.842113
               ]
            ]
         ]
      },

if we check the position of the coordinates, they form a polygon around the city of Rotterdam.

Coordinates display

#H6_DISPLAY GEO DATA FROM TWITTER WITH LEAFLET