User:Simon/self directed research/OCR preprocessing
Pre-processing for OCR:
# import the necessary packages #from PIL import Image import pytesseract import argparse import cv2 import os
# construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True,
help="path to input image to be OCR'd")
ap.add_argument("-p", "--preprocess", type=str, default="thresh",
help="type of preprocessing to be done")
args = vars(ap.parse_args())
# load the example image and convert it to grayscale image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# check to see if we should apply thresholding to preprocess the # image if args["preprocess"] == "thresh":
gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# make a check to see if median blurring should be done to remove # noise elif args["preprocess"] == "blur":
gray = cv2.medianBlur(gray, 3)
# write the grayscale image to disk as a temporary file so we can # apply OCR to it filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray)
# load the image as a PIL/Pillow image, apply OCR, and then delete # the temporary file text = pytesseract.image_to_string(Image.open(filename)) os.remove(filename) print(text)
# show the output images cv2.imshow("Image", image) cv2.imshow("Output", gray) cv2.waitKey(0)