User:Simon/self directed research/OCR preprocessing: Difference between revisions
No edit summary |
No edit summary |
||
Line 51: | Line 51: | ||
cv2.waitKey(0) | cv2.waitKey(0) | ||
</pre> | </pre> | ||
Revision as of 18:19, 10 June 2020
Pre-processing for OCR
This script applies transformations to the image before running OCR, resulting in a clearer result:
# import the necessary packages #from PIL import Image import pytesseract import argparse import cv2 import os # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to input image to be OCR'd") ap.add_argument("-p", "--preprocess", type=str, default="thresh", help="type of preprocessing to be done") args = vars(ap.parse_args()) # load the example image and convert it to grayscale image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # check to see if we should apply thresholding to preprocess the # image if args["preprocess"] == "thresh": gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # make a check to see if median blurring should be done to remove # noise elif args["preprocess"] == "blur": gray = cv2.medianBlur(gray, 3) # write the grayscale image to disk as a temporary file so we can # apply OCR to it filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) # load the image as a PIL/Pillow image, apply OCR, and then delete # the temporary file text = pytesseract.image_to_string(Image.open(filename)) os.remove(filename) print(text) # show the output images cv2.imshow("Image", image) cv2.imshow("Output", gray) cv2.waitKey(0)