User:Alexander Roidl/words2vec: Difference between revisions
(Created page with "Trained on my reader. ==Graph== frameless") |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Part of algologs workshop ~ | |||
Trained on my reader. | Trained on my reader. | ||
==Graph== | ==Graph== | ||
[[File:Screen Shot 2018-03-24 at 11.00.52.png|frameless]] | [[File:Screen Shot 2018-03-24 at 11.00.52.png|500px|frameless]] | ||
==Code== | |||
<source lang="python"> | |||
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================== | |||
from __future__ import absolute_import | |||
from __future__ import division | |||
from __future__ import print_function | |||
import collections | |||
import math | |||
import os | |||
import random | |||
import zipfile | |||
import codecs | |||
import numpy as np | |||
from six.moves import urllib | |||
from six.moves import xrange # pylint: disable=redefined-builtin | |||
import tensorflow as tf | |||
from nltk.tokenize import word_tokenize # Algolit | |||
# Custom Algolit addition | |||
def export(fn, data): | |||
outputdir = 'output/' | |||
if not os.path.exists(outputdir): | |||
os.makedirs(outputdir) | |||
with open(outputdir+fn,'w+') as output: | |||
output.write(str(data)) | |||
print('*exported '+fn+'*') | |||
# Step 1: Download the data. | |||
# url = 'http://mattmahoney.net/dc/' | |||
# def maybe_download(filename, expected_bytes): | |||
# """Download a file if not present, and make sure it's the right size.""" | |||
# if not os.path.exists(filename): | |||
# filename, _ = urllib.request.urlretrieve(url + filename, filename) | |||
# statinfo = os.stat(filename) | |||
# if statinfo.st_size == expected_bytes: | |||
# print('Found and verified', filename) | |||
# else: | |||
# print(statinfo.st_size) | |||
# raise Exception( | |||
# 'Failed to verify ' + filename + '. Can you get to it with a browser?') | |||
# return filename | |||
# filename = maybe_download('text8.zip', 31344016) | |||
# # Read the data into a list of strings. | |||
# def read_data(filename): | |||
# """Extract the first file enclosed in a zip file as a list of words""" | |||
# with zipfile.ZipFile(filename) as f: | |||
# data = tf.compat.as_str(f.read(f.namelist()[0])).split() | |||
# return data | |||
# words = read_data(filename) | |||
# print('Data size', len(words)) | |||
# CUSTOM Algolit addition | |||
trainingset = 'input/text_stripped.txt' | |||
def read_input_text(trainingset): | |||
words = [] | |||
with open(trainingset, 'r') as source: | |||
lines = source.readlines() | |||
for line in lines: | |||
#line = line.decode('utf8') | |||
wordlist = word_tokenize(line) | |||
for word in wordlist: | |||
words.append(word) | |||
return words | |||
words = read_input_text(trainingset) | |||
# Algolit logging | |||
export('wordlist-'+str(len(words))+'.txt', words) | |||
# Step 2: Build the dictionary and replace rare words with UNK token. | |||
vocabulary_size = 5000 | |||
def build_dataset(words): | |||
count = [['UNK', -1]] | |||
count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) | |||
dictionary = dict() | |||
for word, _ in count: | |||
dictionary[word] = len(dictionary) | |||
data = list() | |||
# Custom Algolit addition (logging disregarded words) | |||
disregarded = list() | |||
unk_count = 0 | |||
for word in words: | |||
if word in dictionary: | |||
index = dictionary[word] | |||
else: | |||
index = 0 # dictionary['UNK'] | |||
unk_count += 1 | |||
# Custom Algolit addition | |||
disregarded.append(word) | |||
data.append(index) | |||
count[0][1] = unk_count | |||
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) | |||
return data, count, dictionary, reverse_dictionary, disregarded | |||
data, count, dictionary, reverse_dictionary, disregarded = build_dataset(words) | |||
print('Most common words (+UNK)', count[:5]) | |||
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) | |||
# Algolit logging | |||
export('dictionary-'+str(len(reverse_dictionary))+'.txt', reverse_dictionary) | |||
export('counted.txt', collections.Counter(words)) | |||
export('disregarded-'+str(len(disregarded))+'.txt', disregarded) | |||
export('data-'+str(len(data))+'.txt', data) | |||
# Custom Algolit addition: translate the data object back to words | |||
reversed_input = [] | |||
for index in data: | |||
word = reverse_dictionary[index] | |||
reversed_input.append(word) | |||
reversed_input_fulltext = ' '.join(reversed_input).encode('utf-8') | |||
export('reversed-input-'+str(len(reversed_input))+'.txt', reversed_input_fulltext) | |||
del words # Hint to reduce memory. | |||
data_index = 0 | |||
# Step 3: Function to generate a training batch for the skip-gram model. | |||
def generate_batch(batch_size, num_skips, skip_window): | |||
global data_index | |||
assert batch_size % num_skips == 0 | |||
assert num_skips <= 2 * skip_window | |||
batch = np.ndarray(shape=(batch_size), dtype=np.int32) | |||
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) | |||
span = 2 * skip_window + 1 # [ skip_window target skip_window ] | |||
buffer = collections.deque(maxlen=span) | |||
for _ in range(span): | |||
buffer.append(data[data_index]) | |||
data_index = (data_index + 1) % len(data) | |||
for i in range(batch_size // num_skips): | |||
target = skip_window # target label at the center of the buffer | |||
targets_to_avoid = [skip_window] | |||
for j in range(num_skips): | |||
while target in targets_to_avoid: | |||
target = random.randint(0, span - 1) | |||
targets_to_avoid.append(target) | |||
batch[i * num_skips + j] = buffer[skip_window] | |||
labels[i * num_skips + j, 0] = buffer[target] | |||
buffer.append(data[data_index]) | |||
data_index = (data_index + 1) % len(data) | |||
return batch, labels | |||
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) | |||
# for i in range(8): | |||
# print(batch[i], reverse_dictionary[batch[i]], | |||
# '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) | |||
# Step 4: Build and train a skip-gram model. | |||
batch_size = 128 | |||
embedding_size = 128 # Dimension of the embedding vector. | |||
skip_window = 1 # How many words to consider left and right. | |||
num_skips = 2 # How many times to reuse an input to generate a label. | |||
# We pick a random validation set to sample nearest neighbors. Here we limit the | |||
# validation samples to the words that have a low numeric ID, which by | |||
# construction are also the most frequent. | |||
valid_size = 16 # Random set of words to evaluate similarity on. | |||
valid_window = 100 # Only pick dev samples in the head of the distribution. | |||
valid_examples = np.random.choice(valid_window, valid_size, replace=False) | |||
num_sampled = 64 # Number of negative examples to sample. | |||
graph = tf.Graph() | |||
with graph.as_default(): | |||
# Input data. | |||
train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) | |||
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) | |||
valid_dataset = tf.constant(valid_examples, dtype=tf.int32) | |||
# Ops and variables pinned to the CPU because of missing GPU implementation | |||
with tf.device('/cpu:0'): | |||
# Look up embeddings for inputs. | |||
embeddings = tf.Variable( | |||
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) | |||
embed = tf.nn.embedding_lookup(embeddings, train_inputs) | |||
# Algolit logging | |||
export('big-random-matrix.txt', embeddings) | |||
# Construct the variables for the NCE loss | |||
nce_weights = tf.Variable( | |||
tf.truncated_normal([vocabulary_size, embedding_size], | |||
stddev=1.0 / math.sqrt(embedding_size))) | |||
nce_biases = tf.Variable(tf.zeros([vocabulary_size])) | |||
# Compute the average NCE loss for the batch. | |||
# tf.nce_loss automatically draws a new sample of the negative labels each | |||
# time we evaluate the loss. | |||
loss = tf.reduce_mean( | |||
tf.nn.nce_loss(weights=nce_weights, | |||
biases=nce_biases, | |||
labels=train_labels, | |||
inputs=embed, | |||
num_sampled=num_sampled, | |||
num_classes=vocabulary_size)) | |||
# Construct the SGD optimizer using a learning rate of 1.0. | |||
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) | |||
# Compute the cosine similarity between minibatch examples and all embeddings. | |||
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) | |||
normalized_embeddings = embeddings / norm | |||
valid_embeddings = tf.nn.embedding_lookup( | |||
normalized_embeddings, valid_dataset) | |||
similarity = tf.matmul( | |||
valid_embeddings, normalized_embeddings, transpose_b=True) | |||
# Add variable initializer. | |||
init = tf.global_variables_initializer() | |||
# Step 5: Begin training. | |||
num_steps = 100001 | |||
with tf.Session(graph=graph) as session: | |||
# We must initialize all variables before we use them. | |||
init.run() | |||
print("Initialized") | |||
average_loss = 0 | |||
for step in xrange(num_steps): | |||
batch_inputs, batch_labels = generate_batch( | |||
batch_size, num_skips, skip_window) | |||
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} | |||
# We perform one update step by evaluating the optimizer op (including it | |||
# in the list of returned values for session.run() | |||
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) | |||
average_loss += loss_val | |||
if step % 2000 == 0: | |||
if step > 0: | |||
average_loss /= 2000 | |||
# The average loss is an estimate of the loss over the last 2000 batches. | |||
print("Average loss at step ", step, ": ", average_loss) | |||
average_loss = 0 | |||
# Note that this is expensive (~20% slowdown if computed every 500 steps) | |||
if step % 10000 == 0: | |||
sim = similarity.eval() | |||
# CUSTOM Algolit addition | |||
with codecs.open('output/logfile.txt', 'a+', 'utf-8') as destination: | |||
destination.write('step: '+str(step)+'\n') | |||
destination.write('loss value: '+str(average_loss)+'\n') | |||
for i in xrange(valid_size): | |||
valid_word = reverse_dictionary[valid_examples[i]] | |||
top_k = 8 # number of nearest neighbors | |||
nearest = (-sim[i, :]).argsort()[1:top_k + 1] | |||
log_str = "Nearest to %s:" % valid_word | |||
for k in xrange(top_k): | |||
close_word = reverse_dictionary[nearest[k]] | |||
log_str = "%s %s," % (log_str, close_word) | |||
# CUSTOM Algolit addition | |||
destination.write(log_str+'\n') | |||
print(log_str) | |||
# CUSTOM Algolit addition | |||
destination.write('\n\n') | |||
final_embeddings = normalized_embeddings.eval() | |||
# Algolit logging | |||
export('final_embeddings-matrix.txt', final_embeddings) | |||
# Step 6: Visualize the embeddings. | |||
def plot_with_labels(low_dim_embs, labels, filename='output/graph.eps', format='eps'): | |||
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings" | |||
plt.figure(figsize=(18, 18)) # in inches | |||
ax = plt.axes(frameon=False) | |||
ax.get_xaxis().tick_bottom() | |||
ax.axes.get_xaxis().set_visible(False) | |||
ax.axes.get_yaxis().set_visible(False) | |||
for i, label in enumerate(labels): | |||
x, y = low_dim_embs[i, :] | |||
plt.scatter(x, y) | |||
plt.annotate(label, | |||
xy=(x, y), | |||
xytext=(5, 2), | |||
textcoords='offset points', | |||
ha='right', | |||
va='bottom') | |||
plt.savefig(filename) | |||
try: | |||
from sklearn.manifold import TSNE | |||
import matplotlib.pyplot as plt | |||
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) | |||
plot_only = 500 | |||
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) | |||
labels = [reverse_dictionary[i] for i in xrange(plot_only)] | |||
plot_with_labels(low_dim_embs, labels) | |||
except ImportError: | |||
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.") | |||
</source> |
Latest revision as of 08:43, 27 March 2018
Part of algologs workshop ~ Trained on my reader.
Graph
Code
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
import zipfile
import codecs
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from nltk.tokenize import word_tokenize # Algolit
# Custom Algolit addition
def export(fn, data):
outputdir = 'output/'
if not os.path.exists(outputdir):
os.makedirs(outputdir)
with open(outputdir+fn,'w+') as output:
output.write(str(data))
print('*exported '+fn+'*')
# Step 1: Download the data.
# url = 'http://mattmahoney.net/dc/'
# def maybe_download(filename, expected_bytes):
# """Download a file if not present, and make sure it's the right size."""
# if not os.path.exists(filename):
# filename, _ = urllib.request.urlretrieve(url + filename, filename)
# statinfo = os.stat(filename)
# if statinfo.st_size == expected_bytes:
# print('Found and verified', filename)
# else:
# print(statinfo.st_size)
# raise Exception(
# 'Failed to verify ' + filename + '. Can you get to it with a browser?')
# return filename
# filename = maybe_download('text8.zip', 31344016)
# # Read the data into a list of strings.
# def read_data(filename):
# """Extract the first file enclosed in a zip file as a list of words"""
# with zipfile.ZipFile(filename) as f:
# data = tf.compat.as_str(f.read(f.namelist()[0])).split()
# return data
# words = read_data(filename)
# print('Data size', len(words))
# CUSTOM Algolit addition
trainingset = 'input/text_stripped.txt'
def read_input_text(trainingset):
words = []
with open(trainingset, 'r') as source:
lines = source.readlines()
for line in lines:
#line = line.decode('utf8')
wordlist = word_tokenize(line)
for word in wordlist:
words.append(word)
return words
words = read_input_text(trainingset)
# Algolit logging
export('wordlist-'+str(len(words))+'.txt', words)
# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 5000
def build_dataset(words):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
# Custom Algolit addition (logging disregarded words)
disregarded = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
# Custom Algolit addition
disregarded.append(word)
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary, disregarded
data, count, dictionary, reverse_dictionary, disregarded = build_dataset(words)
print('Most common words (+UNK)', count[:5])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
# Algolit logging
export('dictionary-'+str(len(reverse_dictionary))+'.txt', reverse_dictionary)
export('counted.txt', collections.Counter(words))
export('disregarded-'+str(len(disregarded))+'.txt', disregarded)
export('data-'+str(len(data))+'.txt', data)
# Custom Algolit addition: translate the data object back to words
reversed_input = []
for index in data:
word = reverse_dictionary[index]
reversed_input.append(word)
reversed_input_fulltext = ' '.join(reversed_input).encode('utf-8')
export('reversed-input-'+str(len(reversed_input))+'.txt', reversed_input_fulltext)
del words # Hint to reduce memory.
data_index = 0
# Step 3: Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
# for i in range(8):
# print(batch[i], reverse_dictionary[batch[i]],
# '->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Algolit logging
export('big-random-matrix.txt', embeddings)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Step 5: Begin training.
num_steps = 100001
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print("Initialized")
average_loss = 0
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(
batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print("Average loss at step ", step, ": ", average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
# CUSTOM Algolit addition
with codecs.open('output/logfile.txt', 'a+', 'utf-8') as destination:
destination.write('step: '+str(step)+'\n')
destination.write('loss value: '+str(average_loss)+'\n')
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
# CUSTOM Algolit addition
destination.write(log_str+'\n')
print(log_str)
# CUSTOM Algolit addition
destination.write('\n\n')
final_embeddings = normalized_embeddings.eval()
# Algolit logging
export('final_embeddings-matrix.txt', final_embeddings)
# Step 6: Visualize the embeddings.
def plot_with_labels(low_dim_embs, labels, filename='output/graph.eps', format='eps'):
assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
plt.figure(figsize=(18, 18)) # in inches
ax = plt.axes(frameon=False)
ax.get_xaxis().tick_bottom()
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
for i, label in enumerate(labels):
x, y = low_dim_embs[i, :]
plt.scatter(x, y)
plt.annotate(label,
xy=(x, y),
xytext=(5, 2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
try:
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
plot_only = 500
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
labels = [reverse_dictionary[i] for i in xrange(plot_only)]
plot_with_labels(low_dim_embs, labels)
except ImportError:
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")