PythonLabZalan: Difference between revisions

From XPUB & Lens-Based wiki
No edit summary
Line 44: Line 44:
[[File:Screen Shot 2018-03-24 at 16.12.30.png|thumb|NLTK Analysis outcome]]
[[File:Screen Shot 2018-03-24 at 16.12.30.png|thumb|NLTK Analysis outcome]]


 
First NLTK Analysis in python3
<code>import nltk
 
from nltk import word_tokenize
 
from nltk import FreqDist
 
from nltk.tokenize import sent_tokenize
 
from sys import stdin,stdout
 
import re
 
import sys, string
 
#importing nltk library word_tokenize
 
from collections import Counter
 
text = open ("readertest.txt")
content = text.read()
 
#importing and reading the content
 
#print(content)
 
words = content.split(" ")
 
#the string content needs to signifier - needs to be splitted to be able to read it, it detects if a new words begins based on the " "
 
 
splitting_statistic = sorted (set (words))
 
# the content is splitted
 
#print(splitting_statistic)
 
 
wordsamount_statistic = f'{len(words)} Amount of the words'
 
#amount of the words
 
print(wordsamount_statistic)
 
 
string=(content)
count1=0
count2=0
for i in string:
      if(i.islower()):
            count1=count1+1
      elif(i.isupper()):
            count2=count2+1
print("The number of lowercase characters is:")
print(count1)
print("The number of uppercase characters is:")
print(count2)
 
#counts the lowercase and uppercase letters in the text
 
 
fdist = FreqDist(content)
 
print("10 most common characters:")
print(fdist.most_common(10))
 
#print out the 10 most common letters
 
 
fdist = FreqDist(words)
 
print("10 most common words:")
print(fdist.most_common(10))
 
#print out the 10 most common words
 
 
#new_list = fdist.most_common()
 
#print(new_list)
 
 
#for word, _ in new_list:  #_ ignores the second variable, dictionary (key, value)
    #print(' ',_)
#prints a list of the most common words - how to make it better in one line
 
 
 
def vowel_or_consonants (c):
if not c.isalpha():
return 'Neither'
vowels = 'aeiou'
 
if c.lower() in vowels:
return 'Vowel'
 
else:
return 'Consonant'
 
#for c in (content):
 
#print(c, vowel_or_consonants(c))
 
 
#print(sent_tokenize(content))
 
#splitting text into sentences
 
 
#for word in (words):
#print(word)
 
#control structure, each word in a seperate line
 
 
#fdist = FreqDist(words)
 
#print("hapaxes:")
#print(fdist.hapaxes())
 
#words that occur once only, the so-called hapaxes
 
 
V = set(words)
long_words = [w for w in V if len(w) > 15]
 
print("printing the more than 15 character long words of the text")
print(sorted(long_words))
 
#printing the more than 15 character long words of the text
 
 
tokenized_content = word_tokenize(content)
 
#the content is tokenized (nltk library)
 
 
statistic3 = nltk.pos_tag(tokenized_content)
 
#each word becomes a tag if is a verb, noun, adverb, pronoun, adjective)
 
#print(statistic3)
 
 
verbscounter = 0
 
verblist = []
 
 
for word, tag in statistic3:
if tag in {'VB','VBD','VBG','VBN','VBP','VBZ'}:
verbscounter = verbscounter + 1
verblist.append(word)
 
verb_statistic = f'{verbscounter} Verbs'
 
# shows the amount of verbs in the text
 
print(verb_statistic)
 
print(verblist)
 
#creating a list from the verb counter
#creating a dictionary from a list
 
nouncounter = 0
 
nounlist = []
 
for word, tag in statistic3:
if tag in {'NNP','NNS','NN', 'NNPS'}:
nouncounter = nouncounter + 1
nounlist.append(word)
 
nouns_statistic = f'{nouncounter} Nouns'
 
#shows the amount of nouns in the text
 
print(nouns_statistic)
 
print(nounlist)
 
 
verblist2 = verblist
 
nounlist2 = nounlist
 
verb_noun_dictionary = {}
 
for i in range (len(verblist2)):
verb_noun_dictionary[verblist2[i]] = nounlist2 [i]
 
verblist_and_nounlists = zip (verblist2, nounlist2)
 
verb_noun_dictionary = dict(verblist_and_nounlists)
 
verblist_and_nounlists = dict(zip(verblist2, nounlist2))
 
print(verblist_and_nounlists)
 
print(len(verblist))
 
characters = [words]
 
#print(words)
'''from itertools import groupby
 
def n_letter_dictionary(string):
    result = {}
    for key, group in groupby(sorted(string.split(), key = lambda x: len(x)), lambda x: len(x)):
        result[key] = list(group)
    return result
 
print(n_letter_dictionary)'''
 
 
adverbscounter = 0
 
adverblist = []
 
for word, tag in statistic3:
if tag in {'RB','RBR','RBS','WRB'}:
adverbscounter = adverbscounter + 1
adverblist.append(word)
 
 
adverb_statistic = f'{adverbscounter} Adverbs'
 
#shows the amount of adverbs in the text
 
print(adverb_statistic)
print(adverblist)
 
 
pronounscounter = 0
pronounslist = []
 
for word, tag in statistic3:
if tag in {'PRP','PRP$'}:
pronounscounter = pronounscounter + 1
pronounslist.append(word)
 
pronoun_statistic = f'{pronounscounter} Pronouns'
 
#shows the amount of pronouns in the text
 
print(pronoun_statistic)
 
print(pronounslist)
adjectivscounter = 0
 
adjectivslist = []
 
for word, tag in statistic3:
if tag in {'JJ','JJR','JJS'}:
adjectivscounter = adjectivscounter + 1
adjectivslist.append(word)
 
adjectiv_statistic = f'{adjectivscounter} Adjectives'
 
#shows the amount of adjectives in the text
 
print(adjectiv_statistic)
print(adjectivslist)
 
coordinating_conjuction_counter = 0
 
for word, tag in statistic3:
if tag in {'CC'}:
coordinating_conjuction_counter = coordinating_conjuction_counter + 1
 
coordinating_conjuction_statistic = f'{coordinating_conjuction_counter} Coordinating conjuctions'
 
#shows the amount of coordinating_conjuction in the text
 
print(coordinating_conjuction_statistic)
 
 
cardinal_number = 0
 
for word, tag in statistic3:
if tag in {'CC'}:
cardinal_number = cardinal_number + 1
 
cardinal_number_statistic = f'{cardinal_number} Cardinal numbers'
 
#shows the amount of cardinal_number in the text
 
print(cardinal_number_statistic)
 
 
determiner_counter = 0
 
for word, tag in statistic3:
if tag in {'D'}:
determiner_counter = determiner_counter + 1
 
determiner_statistic = f'{determiner_counter} Determiners'
 
#shows the amount of Determiners in the text
 
print(determiner_statistic)
 
 
existential_there_counter = 0
 
for word, tag in statistic3:
if tag in {'EX'}:
existential_there_counter = existential_there_counter + 1
 
existential_there_statistic = f'{existential_there_counter} Existential there'
 
#shows the amount of Existential there in the text
 
print(existential_there_statistic)
 
foreing_words_counter = 0
 
for word, tag in statistic3:
if tag in {'FW'}:
foreing_words_counter = foreing_words_counter + 1
 
foreing_words_statistic = f'{foreing_words_counter} Foreing words'
 
#shows the amount of foreing words in the text
 
print(foreing_words_statistic)
preposition_or_subordinating_conjunctionlist = []
 
preposition_or_subordinating_conjunction_counter = 0
 
for word, tag in statistic3:
if tag in {'IN'}:
preposition_or_subordinating_conjunction_counter = preposition_or_subordinating_conjunction_counter + 1
preposition_or_subordinating_conjunctionlist.append(word)
preposition_or_subordinating_conjunction_statistic = f'{preposition_or_subordinating_conjunction_counter} Preposition or subordinating conjunctions'
 
#shows the amount of preposition_or_subordinating_conjunction in the text
 
print(preposition_or_subordinating_conjunction_statistic)
 
print(preposition_or_subordinating_conjunctionlist)
 
list_item_marker_counter = 0
 
for word, tag in statistic3:
if tag in {'LS'}:
list_item_marker_counter = list_item_marker_counter + 1
 
list_item_marker_statistic = f'{list_item_marker_counter} List item markers'
 
#shows the amount of list item markers in the text
 
print(list_item_marker_statistic )
 
 
modals_counter = 0
 
for word, tag in statistic3:
if tag in {'LS'}:
modals_counter = modals_counter + 1
 
modals_statistic = f'{modals_counter} Modals'
 
#shows the amount of modals in the text
 
print(modals_statistic)
 
Predeterminer_counter = 0
 
for word, tag in statistic3:
if tag in {'PDT'}:
Predeterminer_counter = Predeterminer_counter  + 1
 
Predeterminer_statistic = f'{Predeterminer_counter } Predeterminers'
 
#shows the amount of Predeterminers in the text
 
print(Predeterminer_statistic)
 
 
Possessive_ending_counter = 0
 
for word, tag in statistic3:
if tag in {'PDT'}:
Possessive_ending_counter = Possessive_ending_counter + 1
 
Possessive_ending_statistic = f'{Possessive_ending_counter} Possessive endings'
 
#shows the amount of Possessive endings in the text
 
print(Possessive_ending_statistic)
 
 
particle_counter = 0
 
for word, tag in statistic3:
if tag in {'RP'}:
Particle_counter = particle_counter + 1
 
particle_statistic = f'{particle_counter} Particles'
 
#shows the amount of Particles endings in the text
 
print(particle_statistic)
 
 
symbol_counter = 0
 
for word, tag in statistic3:
if tag in {'SYM'}:
symbol_counter = symbol_counter + 1
 
symbol_statistic = f'{symbol_counter} Symbols'
 
#shows the amount of symbols in the text
 
print(symbol_statistic)
 
 
to_counter = 0
 
for word, tag in statistic3:
if tag in {'TO'}:
to_counter = to_counter + 1
 
to_statistic = f'{to_counter} to'
 
#shows the amount of to in the text
 
print(to_statistic)
 
 
interjection_counter = 0
 
for word, tag in statistic3:
if tag in {'TO'}:
interjection_counter = interjection_counter + 1
 
interjection_statistic = f'{interjection_counter} Interjections'
 
#shows the amount of interjections in the text
 
print(interjection_statistic)
 
 
Wh_determiner_counter = 0
 
for word, tag in statistic3:
if tag in {'TO'}:
Wh_determiner_counter = Wh_determiner_counter + 1
 
Wh_determiner_statistic = f'{Wh_determiner_counter} Wh determiners'
 
#shows the amount of Wh determiners in the text
 
print(Wh_determiner_statistic)
 
 
Wh_pronoun_counter = 0
 
for word, tag in statistic3:
if tag in {'TO'}:
Wh_pronoun_counter = Wh_pronoun_counter + 1
 
Wh_pronoun_statistic = f'{Wh_pronoun_counter} Wh pronouns'
 
#shows the amount of Wh pronouns in the text
 
print(Wh_pronoun_statistic)
 
 
Possessive_wh_pronoun_counter = 0
 
for word, tag in statistic3:
if tag in {'TO'}:
Possessive_wh_pronoun_counter  = Possessive_wh_pronoun_counter  + 1
 
Possessive_wh_pronoun_statistic = f'{Possessive_wh_pronoun_counter} Possessive wh pronouns'
 
#shows the amount of Possessive wh pronouns in the text
 
print(Possessive_wh_pronoun_statistic)
 
dic1 =([len (i) for i in verblist])
print(dic1)
 
dic2=([len (i) for i in nounlist])
print(dic2)
 
dic3=([len (i) for i in adjectivslist])
print(dic3)
 
dic4=([len (i) for i in preposition_or_subordinating_conjunctionlist])
print(dic4)
#print([len (i) for i in verblist_and_nounlists])
#print([len (i) for i in words])
 
 
 
double_numbers1 = []
for n in dic1:
double_numbers1.append(n*100)
print(double_numbers1)
 
double_numbers2 = []
for n in dic2:
double_numbers2.append(n*100)
print(double_numbers2)
 
double_numbers3 = []
for n in dic3:
double_numbers3.append(n*100)
print(double_numbers3)
 
double_numbers4 = []
for n in dic4:
double_numbers4.append(n*100)
print(double_numbers4)
 
div_numbers1= []
for n in dic1:
div_numbers1.append(n/100)
print(div_numbers1)
 
div_numbers2= []
for n in dic2:
div_numbers2.append(n/100)
print(div_numbers2)
 
div_numbers3= []
for n in dic3:
div_numbers3.append(n/100)
print(div_numbers3)
 
div_numbers4= []
for n in dic4:
div_numbers4.append(n/100)
print(div_numbers4)
 
 
'''lst1 = [[double_numbers1], [double_numbers2], [double_numbers3], [double_numbers4]]
print((zip(*lst1))[0])'''
 
'''lst1 = [[double_numbers1], [double_numbers2], [double_numbers3], [double_numbers4]]
lst2 = []
lst2.append([x[0]for x in lst1])
print(lst2 [0])'''
 
'''lst1 = [[double_numbers1], [double_numbers2], [double_numbers3], [double_numbers4]]
outputlist = []
for values in lst1:
outputlist.append(values[-1])
print(outputlist)'''
 
 
n1 = double_numbers1
n1_a = (n1[0])
print(n1_a)
 
n2 = double_numbers2
#print(n2[0])
 
n3 = double_numbers3
#print(n3[0])
 
n4 = double_numbers4
#print(n4[0])
 
n5 = double_numbers1
#print(n5[1])
 
n6 = double_numbers2
#print(n6[1])
 
n7 = double_numbers3
#print(n7[1])
 
n8 = double_numbers3
#print(n8[1])
 
print((n1[0], n2[0]), (n3[0], n4[0]), (n5[1], n6[1]), (n7[1], n8[1]))
 
n1a = div_numbers1
#print(n1a[0])
 
n2a = div_numbers2
#print(n2a[0])
 
n3a = div_numbers3
#print(n3a[0])
 
n4a = div_numbers4
#print(n4a[0])
 
print(n1a[0], n2a[0], n3a[0], n4a[0])
 
text_file = open ("Output.txt", "w")
 
text_file.write(n1_a)
text_file.close()
 
 
 
 
wordsnumber_statistic = len(content.split())
 
#number of words
 
#print(wordsnumber_statistic)
 
 
numberoflines_statistic = len(content.splitlines())
 
#number of lines
 
print("Number of lines:")
print(numberoflines_statistic)
 
 
numberofcharacters_statistic = len(content)
 
#number of characters
 
print("Number of characters:")
print(numberofcharacters_statistic)
 
 
d ={}
 
for word in words:
d[word] = d.get(word, 0) + 1
 
#how many times a word accuers in the text, not sorted yet(next step)
 
#print(d)
 
 
word_freq =[]
 
for key, value in d.items():
word_freq.append((value, key))
 
#sorted the word count - converting a dictionary into a list
 
#print(word_freq)
 
 
lettercounter = Counter(content)
 
#counts the letters in the text
 
#print(lettercounter)</code>
 
 
 





Revision as of 16:33, 24 March 2018

Terminal

Firstly I looked into basic command line functions File:Commands terminal.pdf and their operations for creating a solid base for Python3.

Optical character recognition + Tesseract

Secondarily I experimented in Terminal how to translate PDF or JPG to .txt files with tesseract and imagemagick (convert).

Optical character recognition

Input 1
Output 1

Tesseract (with languages you will be using)

  • Mac brew install tesseract --all-languages

imagemagick

  • Mac brew install imagemagick

How to use it?

tesseract - png - name of the txt file

tesseracttest SZAKACS$ tesseract namefile.png text2.txt

Getting 1 page from PDF file with PDFTK burst

pdftk yourfile.pdf burst

Or use imagemagick

convert -density 300 Typewriter\ Art\ -\ Riddell\ Alan.pdf Typewriter-%03d.tiff

Chose page you want to convert

Convert PDF to bit-map using imagemagick, with some options to optimize OCR

  • convert -density 300 page.pdf -depth 8 -strip -background white -alpha off ouput.tiff
  • -density 300 resolution 300DPI. Lower resolutions will create errors :)
  • -depth 8number of bits for color. 8bit depth == grey-scale
  • -strip -background white -alpha off removes alpha channel (opacity), and makes the background white
  • output.tiffin previous versions Tesseract only accepted images as tiffs, but currently more bitmap formats are accepted

Python3

Input 2
Output 2
NLTK Analysis outcome

First NLTK Analysis in python3






Natural Language Tool Kit

DrawBot

ACCP (Analogue Circular Communication Protocol