
Software is not visible,
Software is performing.

Software provokes.

Software tells.
Software fails.

Software is imperfect.

Software is poetic.

Software has taken command in our daily lifes. It is omnipresent and
most of our recent world would come to a halt without it. Software
has become so ordinary, that it is often overlooked. Software is tak-
en for granted while it is increasingly entangled in our life and con-
stantly takes over new tasks. Our computers are becoming smarter
through new kinds of algorithms. This leads to new challenges in
understanding software – not only from a scientific point of view
but also from a cultural, political and social perspective.
And so software has also found its way into the art and vice versa,
but there are still gaps in the relation between both of them. I think
that the interaction between software and art can help both of the
disciplines to improve.

The question that I am asking is: what can an artistic method for
researching the processes and relations of software look like? How
can we look critically into the software that we use on a daily basis.
The current perception and use of software are significant parts of
this research. Especially in contrast to the original culture around
software, that included hacking and that required every artist to
write their own software.

This essay explores the multiple layers of software with a special
focus on the dependencies that arise around and through software.
Software is made up of several layers.
The code, the execution (the executable), the output, the user in-
teraction. Code is a well researched topic, also in the arts, as well
as the output has a long history in the arts. But the part of execu-
tion has yet mainly been seen as the functional part. In the follow-
ing essay I want to show the potential artistic use in the processes
of software.

During the research of this project, I found myself returning to the
same essay over and over again, drawing inspiration from and fol-
lowing up on the various issues touched upon by Kittler. I uncovered
a great variety of controversies surrounding the creation, execution
and use of software.
Furthermore, I realized that the more research I did on software and
its implications for our lives the more aware I became of the soft-

ware that I have been using. I started observing my own attitude to-
wards various applications that have been shaping my life and work
everyday and started questioning many functions and backgrounds
of software that I had viewed as a given before.
I became an Ethnographer of my own work in progress. I realized
that my own behaviour and everyday occurrences in the interaction
with software reflected what I was reading in research papers and
articles on my screen and vice versa. Kittler therefore serves as a
point of departure for different controversies around software. This
will lead me to the arts, and why I think art might provide possible
approaches towards these different topics.

The first part of my work will be an ethnographically inspired exam-
ination of the interaction with my computer whilst reading Kittler’s
essay »There is no software«. The text will unfold on two different
levels: On the one hand I am describing the process of reading while
interacting with the software I need to do so. On the other hand
there will be interventions to critically reflect on various concepts
touched upon. These interventions refer to either Kittler’s text it-
self, or to the software that I am using.

In the second part I will describe how art provides different frame-
works to approach the different aspects I pointed out in the first
part.

Why this method?
The detailed description of reading digitally makes the different
software that is being used visible. Through that the software can
be observed while at work. Next to this it is a great chance to re-
visit the text of Kittler. This method also allows for new encounters
and associations with software, that will help to recognise the dif-
ferent agents at stake when thinking about the processes of soft-
ware and the involvement of art with it.

Why »There is no software« by Kittler?
This text very early became one of the key texts of my interest and
research. The text offers a great source for thinking about software
today. Because in his essay from 1992 he is actually not negating

the existence of software, instead he wants to emphasise the mate-
riality, that is being neglected in his opinion.
This is a big tension that we can also recognize in computation to-
day. Even if we do not neglect software, it becomes more and more
invisible, we imagine software mostly through metaphors. Workflows
are so seamless it seems almost like there is no software.

I am reading “There is no software” by Friedrich Kittler. I down-
loaded the pdf file to my computer using the browser. The file is
now stored in my file-system, which I can view in a representation-
al view by opening the file explorer. I double click my way through
the folders until I end up in the Downloads folder, where the newly
downloaded file is placed in a list view amongst others. The file is
called “Kittler_Friedrich_1992_1997_There_Is_No_Software.pdf”. I
hover the small bar with the title, the operating system proposes to
open the file with the document viewer and so I do, by gently dou-
ble clicking the left mouse button. Within seconds a new window
appears putting the file manager window into the background and
foregrounding the title page of the pdf framed by small icons and
scrollbars. I click to enlarge to fullscreen and start to scroll down
till the first lines of text appear. I zoom out pressing CTRL and -
twice. Next, I start reading the first sentence. “The present explo-
sion of the signifying scene, which, as we know from Barry McGuire
and A F. N. Dahran, coincides with the so-called Western world, is
instead an implosion.” Barry McGuire? I hover the name, press the
mouse down and drag from B to e. The text tints white with a blue
background. The release of the mouse button is followed by press-
ing CTRL C. I switch to the browser, which still shows the download
page of the PDF. I paste the name into the search bar and press
enter. The search engine shows a list of results – one video, this
must be it. As the link reacts to my hovering, I click on it and with
a short flickering I end up on youtube. Without any action required
the video starts and the speakers sound: “The eastern world it is
exploding”, to which Kittler must have referred.

Compression
The implosion and explosion can well be seen on different
levels of software. While the complexity and interplay of
different technologies are exploding, the visibility and the
potential for understanding are imploding. Increasingly
better software brings great advances in e.g. computer
vision, but at the same time it becomes harder to under-
stand. The potential of having more sophisticated tech-
nology may come at the risk of blurring the understand-
ing.

At the same time these highly
complex algorithms require more
hardware and even better pro-
cessors.
The implosion of files a very
well used method in the form of
compression. Compression needs
software that is able to rear-
range the bytes of files using
various algorithms, for the sake
of file size. Smaller files can be
stored easier and have advan-
tages for transmitting. But his can have different implica-
tions.
It is a method to circumvent the physical limitations (to
some extend). This means that files can be stored with
very little storage available.
Other than that, we produce increasingly bigger files,
because cameras output high-resolution images, we can
gather more data, scan better and display highly sophis-
ticated websites. But how does this effect us in the real
world? Unlike the imagination that the digital is de-ma-
terialising, the processing of big files for instance is
consuming much energy (https://solar.lowtechmagazine.
com/2018/09/how-to-build-a-lowtech-website.html).
Therefore some websites like the lowtechmagazine are
developing different methods on how to host low-energy
web pages. They are using solar panels and produce their
websites in a way that makes the site very light in terms
of files that have to be transmitted. So from this case we
can see, that compression can have more effects than
assumed. It is these small nuances that make software a
powerful tool to think about current cultural topics.
This lightweight approach gives reason to think about
different aspects of how websites are being served and
how they are built.

I stop the video by clicking onto the face of the singer and a

IMG 2: REFERENCE

shut down one of their scripting languages, many com-
panies that relied on it suffered. (Close to the machine,
105)
Software is growing with time. As Ellen Ullman mentions,
many programmers will work on a system until it becomes
nearly impossible to understand. Still, you will have to
keep it running making it an obsolete system, in which
you can hardly change anything (Close to the machine,
p.117). These kind of dependencies tell their own stories
and are rarely clearly visible.

»We shape our tools and, thereafter, our tools shape us«
(https://medium.com/@freddavis/we-shape-our-tools-
and-thereafter-our-tools-shape-us-1a564cb87484)
says a famous quote by John Culkin from 1967. But if we
look at the dependencies of software one could also say:
we shape tools and these tools shape new tools again.
Transferring this idea to the notion of software as a cul-
tural object, the interrelation between shaping and being
shaped could be formulated as follows: software creates
and influences culture, and therefore this culture shapes
new social conditions under which the construction and
use of software itself is altered. This might become clear
when looking at the example of software-hacking. The
distribution of proprietary software with Digital Rights
Management (DRM) lead to multiple groups cracking and
circumventing software limitations. These cracks are then
distributed as new software.
The original culture of software was actually build around
open source culture. Early software production was very
dependent on this openness. Without open source it
would not have been possible to develop software fur-
ther. (Aymeric, p.9)

I further follow the dark pixels on the screen to the roaring sound
of the computer. It is not clear whether the ventilation sound is
triggered by the hardware or the software, which is causing the CPU
to overheat. Kittler is writing about how the language gets ab-

smoothly appearing pause sign inside a circle signals the success
of my action. I change back to the document viewer by clicking on
the window that got hidden in the background by the browser.
The words I read are displayed with a grained border presumably
caused by the scanning process. As I read on, my t-shaped cursor,
follows the lines of the text.
I continue with the next sentence. »The last historical act of writing
may well have been the moment when, in the early seventies, the In-
tel engineers laid out some dozen square meters of blueprint paper«
(Kittler, 1992).

Dependencies
With its increasing speed, computation fosters itself
while depending on the previous version of its own. The
same holds true for software. Therefore we can recognise
a spiral of dependencies and influences that includes hu-
mans and machines. After the first hardware was able to
draw new, even smaller hardware than it would ever have
been possible with paper and pen, the system of hard-
ware design became dependent on itself. (Kittler, 1992)
This means the next generation of hardware is always
enabled by and relying on the previous version, making
it possible to create even smaller and more complicated
parts. The same can be found in the culture of software
development. Software can only be built with software:
software that enables to write the program code, soft-
ware that compiles the code into machine readable bina-
ry-code and an operating system that executes it. This
also means that nearly every program relies on other
ones, requiring users to pre-install specific versions of
software in order to run the program. If one single com-
ponent of this dependencies breaks, many other programs
will be effected.
The dependence on companies that produce software is
great. If the company decides to discontinue their soft-
ware, the user is directly influenced by it as he can not
use his software anymore. For instance, when Microsoft

replace low-level programming.

»High-level programming approaches can be very suc-
cessful in achieving certain ends, but the very imposi-
tion of higher-level constructs and metaphors also limits
awareness of how code operates in and for itself and
what may be achieved through that. Arguably it is the
changes in low-level systems that have provoked the
biggest paradigm shifts, such as the development of bi-
nary computation and Turing machines [...]« (Yuill 2004)

To me this also means that an active engagement with
different levels of programming is necessary to reflect
important aspects of computation. A critical practice
around software should therefore not only focus on one
specific programming language. This helps to free your-
self from the dependencies stated above and enables
you to engage on different layers, not only the surface.

[-> Argument: more brutalist software -> make software
more durable / more accessible]

I continue in the text, and while Kittler is buying a commercial ver-
sion of WordPerfect, I remember my old copy of Word that still must
by on my hard drive somewhere. I go through the folders of my ap-
plications folder of my second partition scan through all the apps,
that I probably haven’t used for month. I follow the alphabetical
order of the list view and after N, appears a folder called Microsoft.
I double click on the icon of an orange folder and end up in a grid
view, containing 6 files and some folders. Inbetween them: word.exe.
I can’t open it on Linux.

I am a consumer not a user
Nowadays the software that is required to use a machine
comes pre-installed and ready to use. Software can be
downloaded from centralised marketplaces: App Stores.
This causes an immense dependence on the producers.
These producers have developed an infinite selection

stracted from high-level, human readable words, to assembler code,
that is being translated into non readable machine code. As Kittler
talks about this »postmodern Tower of Babel« (1992, p.148) I real-
ise how my windows have started to built up like a tower. The docu-
ment viewer on top of the browser on top of the settings on top of
the mail program and so on.

Framework culture
Programming languages are based on other programming
languages in order to make the code easier to write and
read. Low-level languages are very close to the actual
machine processes and therefore very complex to write.
This is why high-level languages were constructed to
translate this elaborate processes into human readable
concepts and language.
In addition to that programmers often rely on third party
frameworks, which provide functions that are very con-
venient to implement. Instead of having to write the
code themselfs, they just have to put one line of im-
port. Therefore the whole set of tools provided by the
so called library becomes available for the use of the
programmer. The process of using frameworks often
obscures the actual algorithms. For example it can be
quite challenging to create a machine learning algorithm
from scratch but frameworks like »keras« or »tensorflow«
make it accessible. The problem is that the programming
syntax is very close to human language, which makes it
hard to comprehend the actual code. Thus it is harder to
change functions that are underneath the layer of the
framework-interface. (Cox, 2007, p.153)
Furthermore the different programming languages favour
different concepts of language and writing as well. (Cox,
2007, p.153) So the choice of programming language
already determines a certain style of writing. And, be-
cause language significantly shapes our imagination,
the choice of programming language also influences our
understanding of software. Although scripting languag-
es are very popular right now, it should not and can not

»The accompanying paperware« – wait, which paperware? Where
is the manual of my document viewer? I move my mouse towards
the options on top of the window and click on help. A small window
opens, displaying a table of contents. »How to use it« »Find text in
documents«… A page containing hyperlinks for different sections. It
is probably the first time I ever entered this space of the program.

The manual of most programs is part of the software.
Actually, the manual is software. The handbook does
not come in a physical form anymore. Just as the soft-
ware does not ship on Floppy or CD-ROMs. Software is
a download, so it never really enters the physical space
anymore and thus, it becomes even more abstract.
Through the handbook, the software manifests itself as
a tool. A tool, that has certain functions and the manual
describes how to use those functions correctly. Now-
adays, the handbook often constitutes a space that
stays undiscovered. If we want to consider software as
an artistic material, the handbook can also gain new
functions as a description, as a space for thoughts. The
handbook was also used as a metaphor in the readme
festival 2006, to guide visitors through an exhibition of
software. Software often remains invisible in its func-
tions and statements, so it is necessary to describe
what each exhibit is doing.
Software can be so abstract, that the way how software
affects people is often through the metaphors it uses.
What we remember is the animal on the start-screen, not
the algorithm that it uses. For an artistic engagement I
think it is important, to carefully examine the different
parts of software and then reflect on their use – like the
metaphor of the user manual.

I close the help, and find my way back to the text. In the meantime,
Kittler turns towards his punchline: There is no software.

Even though software is depended on hardware, it does
not mean that there is no software. A deeper engagment
with software also means taking software seriously. Even

of apps for everything. This is another example for the
»explosion« of software that was previously mentioned.
This flood of applications causes software to become a
mundane occurrence. The danger of that is that we take
software for granted. When we have a problem, there
is an app for it. Nobody thinks about the possibility of
editing software and adjusting it to one’s need. This
is not only because most of the time it is not possible
to edit the software due to DRM but also because the
average user is not a user anymore. Rather people are
being educated by companies to be consumers instead
of users let alone creators. It is in the companies inter-
est to make their clients dependent on their product.
Therefore companies are not interested in opening up
their products, but they are instead locking it up. They
are then slowly feeding their clients with updates and
new fancy features. This is great for users who just need
to get their job done and who want to be in contact with
technical struggles as little as possible. On the other
hand it means that firstly, the imagination of software
is dictated by companies and secondly that IF you want
to engage with your software you can’t do so. You can’t
look at the source code, reuse parts of it and you can’t
modify the program to your needs.

Of course there is also another end of the spectrum:
hackers and creators with custom software and com-
pletely denying any use of commercial software. This
movement also provides a great source for discussion
about software.
The problem is that the average user is not happy about
struggling to install what they need before they can
actually write something. There are also other kinds of
software, that embrace the user as an active agent,
while still enabling an easy use on the surface. For
example the mediawiki software allows for easy editing
on the browser, while still providing an infrastructure to
easily extend the functions. (source)

thought is the best way to display it (Hadler, 2016, p.7).
At the same time it looks like this user interface is the
only truth that the program holds. It does certainly not
become obvious that this interface is not neutral. The
GUI instead hides. It hides the processes, a lot of func-
tions, the source code, the possibilities, the decision it
takes for you.

The need for a human approach to software also be-
comes visible from the great use of Graphical User In-
terfaces. The so called GUI, is not part of the original
imaginary of computation, where commands were being
filled in via a command line. But today’s average user is
only surrounded by software displayed via a “window”,
encountering the terminal only by chance. Not only does
the GUI simplify commands into buttons and mouse-ac-
tions, but also does it make software more human. A
button that has a 3D effect (Software Studies -> But-
ton), the on/off function is displayed via a switch, the
mouse transforms into a hand or the form that looks like
a letter, which off course you fill in by pressing a pen
symbol. This is also known as skeuomorphism. It means
that objects of the real world are being used for repre-
senting digital functions or interface objects. Humans
anthropomorphize and use metaphors to communicate
the complexities of a less well known domain (the digi-
tal) via the vocabulary and concepts associated to a well
known domain (the physical world). The skeuomorphism
in GUIs is a good example for that.

As I go further in Kittlers text, focusing on the text as my mail soft-
ware wants to interrupt me with some notifications about incoming
mails. I click them away. Kittler is writing about how computers are
writing and reading themselves. I want to copy this part into my
notes. I drag the mouse from »in contrast« to »read and write by
themselves« and as the text tints, the layer of text reads: »in cont-
nast to all histor- ical writigtools, are able to read and write by
thenvselves« (1992, p. 147). My machine has read the text before

though it might be argued that software is only the rep-
resentation of machine operations, it is important to ac-
knowledge software as an independent object of study.
Even though Kittler was arguing that there is no soft-
ware and it is intrinsically connected to its hardware,
Cramer points out that »if any algorithm can be executed
mentally, as it was common before computers were in-
vented, then of course software can exist and run with-
out hardware« (2002). Following this argument it points
to the idea of software in a very conceptual way, not
only defining software as a program that is running on
a certain hardware. All layers of diminishing abstraction
on top of hardware deserve attention. Still it is impor-
tant to recognise both of the perspectives for their im-
portance – the materialistic and the cultural / political.
Anyway, there is no clear border between software and
hardware. Where does software begin and Hardware
end? Is it when the Code is being compiled or is it when
the machine code is transformed into electrical signals?

There is certainly a tension between the development
of software and hardware. The hardware limits the soft-
ware. We can not build applications that run faster than
the hardware. Machine Learning algorithms for exam-
ple need a lot of resources to calculate their models.
This means that effective research with this technology
is only possible with sufficient hardware. Even though
software can be seen as a conceptual good, it is impos-
sible to execute it only mentally, especially when using
very complicated algorithms. Software is only effective
through its execution, its performance.

»First, on an intentionally superficial level, perfect graphic user
interfaces, since they dispense with writing itself, hide a whole ma-
chine from its users.«

The user interface enables a convenient way to display
software (or at least parts of it). This representation
is however only an interpretation of what the designer

me – not only once. Actually the text has probably been written
and read many times before I opened it. The computer had read the
document for words using Optical Character Recognition and even
made its own interpretation. That explains why the selected text is
wrong, because the program misinterpreted some of the characters.
Together with this not incorrect version of the text, it got written
again to the memory. Then another time the text was read once
again – into the working memory, when I opened it with the docu-
ment viewer.

Glitches and non-functional software
Software always comes with a dedicated function or pur-
pose. Although software is meant to be used, to be exe-
cuted, there are also other important layers that are not
only functional (Goriunova and Shulgin, 2004, p. 161).
Yet, we can get a spark of what execution of code means
and how software really acts and performs when it fails
or when it is taken out of its context (Understanding
Computers Source). So in the following I want to argue
that for a serious engagement with software it is also
necessary to look at the non-functional and the stuff
that is in-between the pixels and conducting paths.
Software is primary made to function, but what if soft-
ware fails or malfunctions on purpose? What, if software
has no function?

While The Alliance for Code Excellence imagines »[a]
world where software runs cleanly and correctly as it
simplifies, enhances and enriches our day everyday life
is achievable« (Constant, 2018, p.11) I argue that the
malfunctioning of code can also be something positive
that is revealing and holds a value.
The wrong character recognition as visible from the text
above, can show how the algorithm works. The mistaken
“m” for “rn” shows that the algorithm might work with
visually comparison and has probably not recognised
the gap between “r” and “n” – due to the grain of the
text. This consequently gives a clue, that the algorithm

doesn’t have an idea about the context of words. Other-
wise it would have figured out that some words are not
correct English words.
Furthermore I am thinking about an unstable setup,
where the user knows that there is a potential for crash-
es. It means that engagement is undeniable. At the point
when it crashes you will be able to get a glimpse of the
inner workings of software. In contrary if you rely on the
system and you have no knowledge of how it works, you
will be unable to fix it in case of failure. This means that
software shapes our behaviour and software itself can
be engaging or not.

Other then malfunctioning software is also taken out
of its context when it is used wrongly. The unintended
use of software can arise from an uninformed user or
an user trying to stretch the potential of the functions.
Some people are collecting misuses of software and
operating systems online and it can be quite entertain-
ing (Thought Catalog, 2016). The open source license
embraces this fact of re-using. By giving open access to
the source, it also gives the freedom to reuse code for
other purposes.

The Imperfection of software
Digital System are often considered to be pixel-perfect.
But instead also digital applications become unstable
as they fail. Software can even have the same noise as
non-digital objects have. When Casey Reas wrote about
the new Processing he pointed out the precision of
computers compared to similar art-forms like Sol Le-
Witt practiced it. »[…] [M]achines can draw lines with
absolute precision so all the imperfections in a phys-
ical drawing are removed, giving the rendering differ-
ent characteristics than those intended by LeWitt.«
(https://artport.whitney.org/commissions/software-
structures/text.html) In reality it turned out that after a
few month processing produced the same inaccuracies

(glitches) as a drawing by LeWitt would show. This was
due to updates and changes in the language.

I change from the document view into the writing program Libre Of-
fice, where I store most of my notes. With a single click on the icon,
no keystroke required, the execution starts and the start screen
appears. Many process get triggered by this simple action and the
computer follows its instructions, which I do not know – and not
even see. But not with ease this time. The only thing that I can
occupy right now, that the process must have »stuck«. As my mouse
indicates with a spinning motion, I am unable to continue. I am un-
able to change the program, I am stuck, just like my program. I try
clicking on the icon, again and again, as if my actions would trigger
the program to finally make it. It is as if I want to tell the program
to try harder by clicking harder. Once again I try to encourage the
app, by clicking somewhere randomly on the screen. I give up. I have
had this before, so I know how to act. »sudo kill«. I change to the
terminal, type sudo kill libreoffice. I give my permission and happily I
can see the terminal taking action. With a flicker the startup screen
that was stuck disappears, freeing me and my cursor from redun-
dant spinning. I try restarting the program and hope, that the crash
was only due to difficult circumstances, maybe just something »got
stuck«.

The perception of software is anything but neutral.
Software tells stories, through (1) its metaphors, (2)
through its contents, (3) through its performance.

The digital medium offers new ways of telling stories.
This becomes obvious not only due to different struc-
tures, like the form of the database as Lev Manovich
points out, but also because of the different modes of
intervention software takes in our life. (Manovich, 1999)
Furthermore the medium keeps evolving at inexorable
speed and so does software, leaving space for new ways
of how to tell and what to tell about computation.

That humans tend to anthropomorphize not only their
surroundings but also computers and technology in gen-

eral has been a well researched topic among computer
sciences & psychology. In addition to that humans have
a vivid and diverse imagination about processes that
are invisible. This includes software. Often digital media
black-boxes certain processes and therefore provides a
lot of space for imagination and narratives that can be
constructed around it. (Finn, 2017, p.229) These stories
in applications and around make technology more under-
standable, but can also be source for misconceptions.
A current example seems to be the fear of singularity
after machine learning enables applications to »mag-
ically« generate or label images. The gap between the
real potential and the imagination about it is big. I don’t
want to support an uncritical or blind approach towards
technology – I think it is important to be realistic, crit-
ical and playful equally with these algorithms, only then
turns engagement into insight.

Among others, “The media equation” had shown, that we
as humans consciously and unconsciously anthropomor-
phize computers (Reeves and Nass, 2003). Narratives
have been used for the purpose of marketing and there
have been attempts to create relatable stories within
applications. A well known example is Joseph Weizen-
baum’s Eliza, a digital application, that acted as a ther-
apist, chatting with the user. This piece of software
gave impressive proof of how humans anthropomorphize
even simple digital applications. (Expressive Processing,
p.27). Tech giants have put great effort in implementing
relatable characters into their systems, e.g. voice assis-
tants. An assistant, that is helpful and funny, that gath-
ers you data with great pleasure. But in the past there
have also been unsuccessful attempts to add anthropo-
morphizing elements to programs, only to remind quickly
about Microsoft’s famous Clippy (https://www.artsy.net/
article/artsy-editorial-life-death-microsoft-clippy-pa-
per-clip-loved-hate).

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<?mso-application progid=”Word.Document”?><w:wordDocument xmlns:w=”http://schemas.microsoft.com/office/
word/2003/wordml” xmlns:wx=”http://schemas.microsoft.com/office/word/2003/auxHint” xmlns:o=”urn:schemas-mi-
crosoft-com:office:office” xmlns:aml=”http://schemas.microsoft.com/aml/2001/core” xmlns:dt=”uuid:C2F41010-
65B3-11d1-A29F-00AA00C14882” xmlns:v=”urn:schemas-microsoft-com:vml” xmlns:w10=”urn:schemas-micro-
soft-com:office:word” xmlns:number=”urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0” xml:space=”preserve”
w:embeddedObjPresent=”no”>
 <o:DocumentProperties xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><o:-
Title/><o:Subject/><o:Keywords/><o:Description/><o:Category/><o:Author/><o:LastAuthor/><o:Man-
ager/><o:Company/><o:HyperlinkBase/><o:Revision>1</o:Revision><o:TotalTime>0</o:TotalTime><o:Last-
Printed/><o:Created>2019-02-11T18:16:28.393800095Z</o:Created><o:LastSaved>2019-02-11T18:16:55.
865428995Z</o:LastSaved><o:Pages>1</o:Pages><o:Words>25</o:Words><o:Characters>174</o:Charac-
ters><o:Paragraphs>1</o:Paragraphs></o:DocumentProperties><o:CustomDocumentProperties xmlns:fo=”urn:oa-
sis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><o:Editor dt:dt=”string”>LibreOffice/5.4.4.2$Ma-
cOSX_X86_64 LibreOffice_project/2524958677847fb3bb44820e40380acbe820f960</o:Editor><o:Language
dt:dt=”string”/></o:CustomDocumentProperties>
 <w:fonts><w:defaultFonts w:ascii=”” w:h-ansi=”” w:fareast=”” w:cs=””/><w:font w:name=”Execu-
tive-55Reg”><w:family w:val=”Roman”/><w:pitch w:val=”variable”/></w:font><w:font w:name=”Liberation
Serif”><w:family w:val=”Roman”/><w:pitch w:val=”variable”/></w:font><w:font w:name=”MinionPro-Regu-
lar”><w:family w:val=”Roman”/><w:pitch w:val=”variable”/></w:font><w:font w:name=”Liberation Sans”><w:family
w:val=”Swiss”/><w:pitch w:val=”variable”/></w:font><w:font w:name=”Arial Unicode MS”><w:family w:val=”Sys-
tem”/><w:pitch w:val=”variable”/></w:font></w:fonts>

 <w:lists xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:listDef
w:listDefId=”0”><w:lvl w:ilvl=”0”><w:start w:val=”1”/><w:nfc w:val=”255”/><w:lvlText w:val=”%1”/><w:lvlJc
w:val=”left”/><w:suff w:val=”Nothing”/></w:lvl><w:lvl w:ilvl=”1”><w:start w:val=”1”/><w:nfc w:val=”255”/><w:lv-
lText w:val=”%2”/><w:lvlJc w:val=”left”/><w:suff w:val=”Nothing”/></w:lvl><w:lvl w:ilvl=”2”><w:start
w:val=”1”/><w:nfc w:val=”255”/><w:lvlText w:val=”%3”/><w:lvlJc w:val=”left”/><w:suff w:val=”Noth-
ing”/></w:lvl><w:lvl w:ilvl=”3”><w:start w:val=”1”/><w:nfc w:val=”255”/><w:lvlText w:val=”%4”/><w:lvlJc
w:val=”left”/><w:suff w:val=”Nothing”/></w:lvl><w:lvl w:ilvl=”4”><w:start w:val=”1”/><w:nfc w:val=”255”/><w:lv-
lText w:val=”%5”/><w:lvlJc w:val=”left”/><w:suff w:val=”Nothing”/></w:lvl><w:lvl w:ilvl=”5”><w:start
w:val=”1”/><w:nfc w:val=”255”/><w:lvlText w:val=”%6”/><w:lvlJc w:val=”left”/><w:suff w:val=”Nothing”/></w:lv-
l><w:lvl w:ilvl=”6”><w:start w:val=”1”/><w:nfc w:val=”255”/><w:lvlText w:val=”%7”/><w:lvlJc w:val=”left”/><w:suff
w:val=”Nothing”/></w:lvl><w:lvl w:ilvl=”7”><w:start w:val=”1”/><w:nfc w:val=”255”/><w:lvlText
w:val=”%8”/><w:lvlJc w:val=”left”/><w:suff w:val=”Nothing”/></w:lvl><w:lvl w:ilvl=”8”><w:start w:val=”1”/><w:nfc
w:val=”255”/><w:lvlText w:val=”%9”/><w:lvlJc w:val=”left”/><w:suff w:val=”Nothing”/></w:lvl></w:listDef><w:list
w:ilfo=”1”><w:ilst w:val=”0”/></w:list></w:lists>

 <w:styles>
 <w:style w:styleId=”default-paragraph-style” w:type=”paragraph” w:default=”on”><w:name
w:val=”default-paragraph-style”/><w:pPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-com-
patible:1.0”><w:adjustRightInd w:val=”off”/><w:spacing/><w:ind/><w:widowControl w:val=”on”/><w:pB-
dr/><w:ind/></w:pPr><w:rPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:r-
Fonts w:ascii=”Liberation Serif” w:h-ansi=”Liberation Serif” w:fareast=”Arial Unicode MS” w:cs=”Arial Unicode
MS”/><w:sz w:val=”24”/><w:lang w:val=”en-GB”/></w:rPr></w:style><w:style w:styleId=”default-table-style”
w:type=”table” w:default=”on”><w:name w:val=”default-table-style”/><w:tblPr><w:tblInd xmlns:fo=”urn:oa-
sis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0” w:w=”0” w:type=”auto”/></w:tblPr></w:style><w:style
w:styleId=”Standard” w:type=”paragraph”><w:basedOn w:val=”default-paragraph-style”/><w:name w:val=”-
Standard”/><w:pPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:adjustRightInd
w:val=”off”/><w:spacing/><w:ind/><w:widowControl w:val=”off”/><w:pBdr/><w:ind/></w:pPr><w:rPr xmlns:-
fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”/></w:style><w:style w:styleId=”Heading”
w:type=”paragraph”><w:basedOn w:val=”Standard”/><w:name w:val=”Heading”/><w:next w:val=”Text_20_
body”/><w:pPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:adjustRightInd
w:val=”off”/><w:spacing w:before=”239.841” w:after=”120.204”/><w:ind/><w:widowControl w:val=”off”/><w:pB-
dr/><w:ind/></w:pPr><w:rPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:r-
Fonts w:ascii=”Liberation Sans” w:h-ansi=”Liberation Sans” w:fareast=”Arial Unicode MS” w:cs=”Arial Unicode
MS”/><w:sz w:val=”28”/></w:rPr></w:style><w:style w:styleId=”Text_20_body” w:type=”paragraph”><w:basedOn
w:val=”Standard”/><w:name w:val=”Text_20_body”/><w:pPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:x-
sl-fo-compatible:1.0”><w:adjustRightInd w:val=”off”/><w:spacing w:line-rule=”auto” w:line=”288” w:before=”0”
w:after=”140.049”/><w:ind/><w:widowControl w:val=”off”/><w:pBdr/><w:ind/></w:pPr></w:style><w:style
w:styleId=”List” w:type=”paragraph”><w:basedOn w:val=”Text_20_body”/><w:name w:val=”List”/><w:rPr xmlns:-
fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”/></w:style><w:style w:styleId=”Caption”
w:type=”paragraph”><w:basedOn w:val=”Standard”/><w:name w:val=”Caption”/><w:pPr xmlns:fo=”urn:oa-
sis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:adjustRightInd w:val=”off”/><w:spacing w:be-
fore=”120.204” w:after=”120.204”/><w:ind/><w:widowControl w:val=”off”/><w:supressLineNumbers/><w:pB-

dr/><w:ind/></w:pPr><w:rPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:sz
w:val=”24”/><w:i/></w:rPr></w:style><w:style w:styleId=”Index” w:type=”paragraph”><w:basedOn
w:val=”Standard”/><w:name w:val=”Index”/><w:pPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:x-
sl-fo-compatible:1.0”><w:adjustRightInd w:val=”off”/><w:spacing/><w:ind/><w:widowControl
w:val=”off”/><w:supressLineNumbers/><w:pBdr/><w:ind/></w:pPr><w:rPr xmlns:fo=”urn:oasis:names:tc:open-
document:xmlns:xsl-fo-compatible:1.0”/></w:style><w:style w:styleId=”_5b_No_20_Paragraph_20_Style_5d_”
w:type=”paragraph”><w:basedOn w:val=”default-paragraph-style”/><w:name w:val=”_5b_No_20_Paragraph_20_
Style_5d_”/><w:pPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:adjustRightInd
w:val=”off”/><w:jc w:val=”left”/><w:spacing w:line-rule=”auto” w:line=”288” w:before=”0” w:after=”0”/><w:ind
w:left=”0” w:right=”0” w:first-line=”0”/><w:widowControl w:val=”on”/><w:textAlignment w:val=”center”/><w:pB-
dr/><w:ind/></w:pPr><w:rPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:r-
Fonts w:ascii=”MinionPro-Regular” w:h-ansi=”MinionPro-Regular”/><w:sz w:val=”24”/><w:u w:val=”none”/>
<w:strike/><w:color w:val=”auto”/><w:w w:val=”100”/><w:em w:val=”none”/><w:lang w:val=”en-GB”/></w:r-
Pr></w:style><w:style w:styleId=”_5b_Basic_20_Paragraph_5d_” w:type=”paragraph”><w:basedOn
w:val=”_5b_No_20_Paragraph_20_Style_5d_”/><w:name w:val=”_5b_Basic_20_Paragraph_5d_”/><w:pPr xmlns:-
fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:adjustRightInd w:val=”off”/><w:jc
w:val=”left”/><w:spacing w:line-rule=”auto” w:line=”288” w:before=”0” w:after=”0”/><w:ind w:left=”0” w:right=”0”
w:first-line=”0”/><w:widowControl w:val=”off”/><w:textAlignment w:val=”center”/><w:pBdr/><w:ind/></w:p-
Pr><w:rPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:rFonts w:ascii=”Ex-
ecutive-55Reg” w:h-ansi=”Executive-55Reg”/><w:sz w:val=”24”/><w:u w:val=”none”/><w:strike/><w:color
w:val=”auto”/><w:w w:val=”100”/><w:em w:val=”none”/><w:lang w:val=”en-GB”/></w:rPr></w:style><w:style
w:styleId=”Footnote_20_Symbol” w:type=”character”><w:name w:val=”Footnote_20_Symbol”/></w:style>
 <w:style w:styleId=”P1” w:type=”paragraph”><w:basedOn w:val=”_5b_Basic_20_Para-
graph_5d_”/><w:name w:val=”P1”/><w:hidden w:val=”on”/><w:pPr xmlns:fo=”urn:oasis:names:tc:open-
document:xmlns:xsl-fo-compatible:1.0”><w:adjustRightInd w:val=”off”/><w:spacing w:line-rule=”auto”
w:line=”288”/><w:ind w:left=”0” w:right=”0” w:first-line=”0”/><w:widowControl w:val=”off”/><w:pB-
dr/><w:ind/></w:pPr></w:style><w:style w:styleId=”T1” w:type=”character”><w:name w:val=”T1”/><w:hidden
w:val=”on”/><w:rPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:rFonts w:as-
cii=”Executive-55Reg” w:h-ansi=”Executive-55Reg”/><w:sz w:val=”24”/><w:u w:val=”none”/><w:strike/><w:color
w:val=”auto”/><w:w w:val=”100”/><w:em w:val=”none”/><w:lang w:val=”en-GB”/></w:rPr></w:style>
 <w:style xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0” w:type=”char-
acter” w:styleId=”Hyperlink”><w:name w:val=”Hyperlink”/><w:rsid w:val=”006A55B0”/><w:rPr><w:color
w:val=”000080”/><w:u w:val=”single”/></w:rPr></w:style><w:style xmlns:fo=”urn:oasis:names:tc:opendocu-
ment:xmlns:xsl-fo-compatible:1.0” w:type=”character” w:styleId=”FollowedHyperlink”><w:name w:val=”FollowedHy-
perlink”/><w:rsid w:val=”006A55B0”/><w:rPr><w:color w:val=”800000”/><w:u w:val=”single”/></w:rPr></w:style>

 <w:style xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0” w:type=”char-
acter” w:styleId=”CommentReference”><w:name w:val=”annotation reference”/><w:basedOn w:val=”De-
faultParagraphFont”/><w:semiHidden/><w:rsid w:val=”007770B7”/><w:rPr><w:sz w:val=”16”/><w:sz-cs
w:val=”16”/></w:rPr></w:style><w:style xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”
w:type=”paragraph” w:styleId=”CommentText”><w:name w:val=”annotation text”/><w:basedOn w:val=”Nor-
mal”/><w:semiHidden/><w:rsid w:val=”007770B7”/><w:pPr><w:pStyle w:val=”CommentText”/></w:pPr><w:r-
Pr><w:sz w:val=”20”/><w:sz-cs w:val=”20”/></w:rPr></w:style><w:style xmlns:fo=”urn:oasis:names:tc:opendoc-
ument:xmlns:xsl-fo-compatible:1.0” w:type=”paragraph” w:styleId=”CommentSubject”><w:name w:val=”annotation
subject”/><w:basedOn w:val=”CommentText”/><w:next w:val=”CommentText”/><w:semiHidden/><w:rsid
w:val=”007770B7”/><w:pPr><w:pStyle w:val=”CommentSubject”/></w:pPr><w:rPr><w:b/><w:b-cs/></w:rPr></w:-
style>

 </w:styles>

 <w:docPr xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:display-
BackgroundShape/><w:view w:val=”print”/><w:zoom w:percent=””/><w:defaultTabStop w:val=”720.09”/><w:-
docVars/></w:docPr>
 <w:body><w:p xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”><w:pPr><w:p-
Style w:val=”P1”/></w:pPr><w:r><w:rPr><w:rStyle w:val=”T1”/></w:rPr><w:t>.Theinversestrategyofmaximizing-
noisewouldnot only find the way back from IBM to Shannon, it may well be the only way to enter that body of real
numbers originallyknownaschaos</w:t></w:r></w:p><w:p xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:x-
sl-fo-compatible:1.0”><w:pPr><w:pStyle w:val=”Standard”/></w:pPr></w:p><w:sectPr><w:type w:val=”next-
page”/><w:pgSz xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0” w:w=”11907.5672”
w:h=”16839.9003” w:orient=”portrait”/><w:pgMar xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-com-
patible:1.0” w:top=”1134” w:bottom=”1134” w:left=”1134” w:gutter=”0” w:right=”1134”/><w:pgBorders xmlns:-
fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0” w:offset-from=”text”/></w:sectPr></w:body>
 </w:wordDocument>

Another case of narratives is the narrative that exists
outside the software. It lies in its performance. How it
acts, where and when. The realisation that people relate
to software on an emotional level, makes it possible to
create software that tells more than its function. Ac-
tually it s possible to tell stories only by how software
works. This kind of narrative has been used in some
applications of software Art. For example one work which
can be found on runme.org. The work is about two Vi-
ruses in love. » They search for each other on the net,
running through connected computers« (http://runme.
org/project/+ViCon/).

This text itself reflects the way how we perceive and
talk about software. It shows how unconsciously we use
software and the underlying concepts that we touch
upon on a daily basis.

I restart Libre Office – this time it works. An empty document
opens, and a blinking cursor indicates, that I am ready to type. I
switch back to the text viewer and copy the last sentence. After
clicking my way back into my editor I paste the string form the clip-
board to my empty document. Immediately the text fills the screen:
».Theinversestrategyofmaximizingnoisewouldnot only find the way
back from IBM to Shannon, it may well be the only way to enter that
body of real numbers originallyknownaschaos«

The polished interface makes us forget about what
programmers struggle with every day. The noise that
surrounds computation. It is the same noise that should
make us aware of how imperfect and subjective software
is, but in many cases this noise is being suppressed.
Every small glitch is being removed out of software and
every irregularity is considered as a bug.
But this noise might instead be the possibility to further
explore new opportunities with Code and its execution.
Maybe the beauty of software lies in exactly this noise,
that is being forgotten about between the logical opera-
tions with 0s and 1s.

I save the file and the machine once again writes for me to the
hard-drive. I store it using the file-format xml. The file gets stored
called NotesOnKittler.xml into the Documents folder. If I open the
text in a normal text-editor it turns out, the computer has actually
written noise around the actual text that I saved. This noise makes
up the standards of the .xml format, encoding information within
<tags>.

How to understand software differently.

Surfaces
There are certain trends in software production, that influence
our culture towards an increasing gap between sophisticated al-
gorithms and their representation to the user. While the former
becomes ever more complicated, the latter is getting more polished
with every update. The computational processes get hidden behind
user interfaces.
This focus on surfaces, not only reduces software to its interface,
but also reflects the current engagement of art with software. The
artistic use of machine learning is a great example of the effects
of a user that is focused on the interface layer. Instead of engag-
ing with the inner functions of neural networks, artists generate
obscure images while mostly talking about datasets, utopia or
dystopia. (source) I do not want to say that these approaches are
not valid: While it is important to look at the “superficial” layers of
algorithms, this should not obscure the underlying technical pro-
cesses.
What could this artistic practice with software look like? software
Art provides an interesting example for an art practice that ac-
knowledges the cultural importance of software at its very core.

Software Art
Software Art describes the »artistic preoccupation with software
production« (Cox, 2007, p.147) This means that software Art is
using either the software itself or Code as its material. The subject
it addresses are mostly the cultural concepts of software (Cramer,

2002b).

The approach of software Art
Software has become so commonplace, that a normal user doesn’t
even really recognise its existence. A similar effect can be seen in
artistic engagement. Software is just part of many digital artworks,
not even worth to mention.
Software Art instead does not take software for granted and there-
fore it also realises how software is made and by whom (Cramer,
2002).
To put focus on the process instead of the end product is not new
in the art world, but software Art exemplifies this approach »appro-
priate to contemporary conditions« (Cox, 2007, p.147). This enables
also to think of software in terms of performance. While the result
is not necessarily a fixed product, that is visible, it can be a runtime
application, that never reaches the state of finishing. An approach
like this opens up new discussions and new ideas. An example of
this might be the application »Every Icon« by John F Simon Jr. It is
a simple 32 by 32 grid that iterates through every possible combi-
nation of black and white squares in the grid. The application has
been running since January 14, 1997 and will continue for many
years. The application only becomes visible, when you visit the web-
site, which displays the current state. Other then that it performs
on its own, reaching formations that will never be seen. In a very
neat way this work challenges the viewers imagination about limi-
tations of computation, while automatically producing new, unique
images.

By taking software as a primary object of study it acknowledges the
role of software in a cultural manner, and realizes that software »is
not merely a functional tool, but is itself an artistic creation (Net-
time.org, 2001). This implies also that the code, which software is
made of, becomes the material. It means that software is opened up
to much more possibilities. Not only Art will profit from such en-
gagement, but also the culture around software.

Generative Art
Software Art can be seen as a reaction to the narrow use of soft-

ware in for instance Generative Art. In comparison to software Art
the term Generative Art has been around for way longer, following
up on Computer Art. But unlike software Art Generative Art doesn’t
consider software as the primary object of study but uses it, if at
all, only as a tool. Furthermore Generative Art is focused on the out-
put (Galanter, 2003).
Going back to the example of machine learning and the current
artistic use. The deep dream is not deep indeed. The use of these
algorithms is very flat and mostly concentrates only on the output.
It’s weird morphed images that are being generated on high-re-
sources machines. And they contain for sure very interesting new
ways how to program, but this stays untouched by artists. When
the images that we see around as outputs of these algorithms can
be considered as Generative Art, how could software Art be used to
create a deeper understanding of this technology? For example it
would also be possible to investigate in algorithms, or part of it or
narratives around neural networks itself, instead of showing mor-
phed images that happened to come out of pre-written examples. Of
course experimentation with such new algorithms should be wel-
comed and can be helpful to find ways into new territory, but at the
same time it is often being forgotten about engaging with the actual
software and algorithm that they are using.
So the artistic engagement with software should not only regard
software as a “pragmatic aid” but carefully look at all the different
actors at stake (Arns, 2005).

There is a tension between the understanding of Generative Art and
software Art that can be productive and helpful to understand new
technologies. First of all this distinction makes obvious how versa-
tile software is being used. Secondly this makes obvious the gap
between the surface and the underlying material. It is important to
talk about both, how software works and how it is represented.

Software Studies
Some past publications have dealt with another examination of
software, especially in a cultural framework. Software Studies by
Matthew Fuller for instance provides a lexicon with diverse objects
of software that are being examined. On the blurb of the dust cov-

er of the book Fuller states: »The growing importance of software
makes it necessary to understand […] the poetics of a loop« (Fuller,
2008). I think this is an important realisation, which opens up the
field of software to many different possibilities of understanding
and researching.
[especially:
* software Studies, Matthew Fuller
* http://computationalculture.net/ (online journal by Fuller)
* Coding Literacy, Annette Vee
* The Stack, Benjamin H. Bratton
* The stuff of bits, Paul Dourish
* Machine Learners, Adrian Mackenzie
* How to be a geek, Matthew Fuller
* software Theory, Frederica Frabetti
* The Philosophy of software, David M. Berry]

Freeing software
Former artists had to write software to generate, nowadays soft-
ware is widely available, so it is not necessary to engage with it.
This of course means a decline in engagement with software and
comes with the risk to take software for granted, without question-
ing it. But the positive consequence is that this frees programming
from certain aspects and gives room for a new engagement, “just as
previously the invention of photography perhaps freed painting from
figurative representation” (Cox, 2007, p. 155). This also means that
software should be used more diverse and could also be abstract.
In my opinion software does not always need to have a use, let soft-
ware be fun. Software should be explored like one plays with pho-
tography or different materials of painting. Only that the computer
is the stage. Brenda Laurel is writing about Computers as a theatre.
(source)

The execution of software can be seen as a performance. When the
program is executed the code turns into machine actions.
[elaborate further]

I think that the involvement of art with software can present a use-
ful and contemporary way to change how software is perceived and

how we deal with software. The history of software Art shows that
this engagement is possible and revealing. In the following I want to
point out why I think art can help in the understanding and use of
software with a special focus on the underlying processes that are
often hidden in programs.

Software is so complex in its relations and so versatile in its ef-
fects, that it might be hard to go about a structured analysis. In-
stead the arts might provide a field of exploration and experimen-
tation, which can at the same time question and enrich the culture
around software. Artistic practice has show that it can occupy
fields that are not completely understood, like in the field of music.
Art offers the opportunity to deeply engage with certain aspects of
software and connect the cultural to the scientific realm. Also soft-
ware can be created by artists to express in new ways and comment
on different recent developments. [example]
Although this has to be handled in a subtle way, as a wrong ap-
proach can also quickly cause misconceptions. I can cause image-
inations that are not helpful for the engagement or understanding
of technology. The potential to buily stories and trigger different
imaginations about software or hardware, it a powerful tool to work
with as an artist.

»The strong claim for aesthetic computing is that by introducing
ideas and methods from art and design into computing, new prac-
tices and approaches will emerge responding to new objectives that
would not naturally have evolved within the computer sciences and
engineering.« (Aestetic Computing, p.31)

The problem of software Archives shows the complexity of software
on another layer. Next to his literary work Kittler left a great amount
of software as his estate. People archiving his work where confront-
ed with great problems when trying to preserve the software he
wrote. (http://traumawien.at/stuff/theory/volume1-feigelfeld.pdf).
But how can one archive software? If you only save the program
code, this bit of code might very quickly become incomprehensible.
Computation changes very fast and so do the programming languag-
es. That means that in a very short amount of time certain languag-

es become deprecated and can not be executed anymore. The most
present example is Flash. Many interesting art pieces have been
created in this language, but due to many different factors Flash is
not used anymore. As a consequence many digital artworks can not
be executed easily. So you would have to archive whole frameworks
or even the whole hardware with the software? This question chal-
lenges many factors and might not be solved in a very long time. It
shows once again the complexity and the linkages of software.
A different approach on how to archive could well be thought of
through art. In an active way, e.g. if artworks deal with the history
and the present of software production, it can be a good way to
activate and preserve code and its performance. This can happen
through its narratives, through its output or subject.

Conclusion

[–learning about the method I used
– art in software and software in art can be helpful
– towards a more thoughtful use of software]

I close the document viewer and switch back to LibreOffice, I open
a new document and it seems like I’m writing, but the computer is
writing for me.

References

Arns, I. (2005). “READ_ME , RUN_ME, EXECUTE_ME.’’ In: O. Goriuno-
va and A. Shulgin, ed., “read_me: software Art & Cultures”, 1st ed.
Aarhus University Press.

Berry, D. (2011). The philosophy of software. Basingstoke: Palgrave
Macmillan.

Choi, T. (2017). Poetic Computation: Reader. [online] Poeticcompu-
tation.info. Available at: http://poeticcomputation.info/chapters/
ch.1/ [Accessed 21 Jan. 2019].

Cramer, F. (2002a). “Contextualising software Art”. [pdf] Cramer.
pleintekst.nl. Available at: http://cramer.pleintekst.nl/all/con-
cept’’notations’’Software’’art/Software’’decontextualizaton.pdf
[Accessed 6 Dec. 2018].

Cramer, F. (2002). “Concepts, Notations, software, Art’’. [online]
Cramer.pleintekst.nl. Available at: http://cramer.pleintekst.nl/
all/concept’’notations’’Software’’art/concepts’’notations’’Soft-
ware’’art.html [Accessed 6 Dec. 2018].

Cramer, F. (2003). ‘’Exe.cut[up]able statements: the Insistence of
Code.’’ in Stocker G. & Schöpf C. (eds.), ‘’Code – The Lan-
guage of our time’’, Linz: Hatje Cantz, pp. 98-103

Constant (2018). The Techno-Galactic Guide to software Observa-
tion. Brussels: Constant, Association for Art and Media.

Cox, G. and McLean, A. (2013). “Speaking code”. Cambridge, Mass.:
The MIT Press.

Cox, G. (2007). “Generator: The Value of software Art”. In Rugg, J.,
& Sedgwick, M. (ed.) Issues in Curating Contemporary Art and
Performance. Intellect Books, pp. 147-162.

Finn. (2017). What Algorithms Want. The MIT Press.

Fuller, M. (2008). Software Studies. Cambridge, Massachusetts: The
MIT Press.

Galanter, P. (2003). “What is Generative Art?”. [pdf] Available at:
https://www.philipgalanter.com/downloads/ga2003_paper.pdf [Ac-
cessed 6 Dec. 2018].

Goriunova, O. and Shulgin, A. (2004). Read_me. Århus, Denmark:
Digital Aesthetics Research Centre, University of Aarhus.

Hadler, F., Haupt, J. and Andrews, T. (2016). “Interface critique”.
Berlin, Kulturverlag Kadmos Berlin.

Kittler, F. (1992). There Is No software. [online] Monoskop.org.
Available at: https://monoskop.org/images/f/f9/Kittler_Frie-
drich_1992_1997_There_Is_No_Software.pdf [Accessed 11 Feb.
2019].

Knuth, D. (2013). The art of computer programming. Upper Saddle
River [etc.]: Addison-Wesley.

Manovich, L. (1999). Database as Symbolic Form. Convergence: The
International Journal of Research into New Media Technologies,
5(2), pp.80-99.

Nettime.org. (2001). nettime mailing list. [online] Available at:
http://amsterdam.nettime.org/Lists-Archives/rohrpost-0101/
msg00039.html [Accessed 11 Feb. 2019].

Reeves, B. and Nass, C. (2003). The media equation. Center for the
Study of Language and Information Publication.

Stallman, R. (2010). What Does That Server Really Serve?. [online]
Boston Review. Available at: http://bostonreview.net/richard-stall-
man-free-Software-DRM [Accessed 21 Jan. 2019].

Thought Catalog. (2016). 21 People Share The Greatest software
Misuses They’ve Witnessed. [online] Available at: https://thought-
catalog.com/michael-koh/2014/01/21-people-share-the-greatest-
Software-misuses-theyve-witnessed/ [Accessed 21 Jan. 2019].

Yuill S. (2004). Code Art Brutalism: Low-Level Systems and Simple
Programs in Goriunova O. and Shulgin A. (ed.) Read_me: software
Art and Cultures, Aarhus:Digital Aesthetics Research Centre.

Software zoo

