
Text-based-Python-adventures

This is a step-to-step notebook to make text-based-Python-

adventures.

And! To work the following programming concepts:

reading input from the user at the terminal

organizing data in structures like lists and

dictionaries

using if/else statements to check different conditions

encapsulating code with functions

using while loops

We will use Python scripts and run the code in the terminal.

This notebook is more like a reference, you can run code here but

it's recommended to work in a Python script.

We will start with a more linear approach. After that, we switch to

a non-linear approach.

•

•

•

•

•

Using input()

In []:input()

In []:reply = input()

In []:print(reply)

Linear approach

Copy the code from below and save it as a Python script.

You can give it any name, just make sure the file ends with .py .

For example: adventures.py

Note: choose where you prefer to work (on breadcube in

Jupyter, or on your own computer)

In …welcome_message = """
 You came back from the winter break and you
walk into the XPUB studio.
 Oh... Nobody is here apart from a bunch of
silent Mac computers...

 Before the break, Michael mentioned something
about renovations...
 You can't remember what it was again, but he
said something about
 the FIT people, and that they would install an
ultra-smart-sensor-thingy in the studio...
 and that it would respond to any XPUB student
saying... 'hello'...

 Would this be true...?

 Is it installed already...?
 """

print(welcome_message)
reply = input()

if "hello" in reply:
 print("hello ... hello ... ello ... lo ...
o ...")
else:
 print("This cave is special... it only echoes
the word 'hello'.")

message = """
 Suddenly the lights go off!

 What happened? Is there no electricity?

 You look around to find the exit door, but it's
very dark.
 You have something in your right hand... is it
a lamp?
 """

In []:message = "What do you want to do?"
print(message)
reply = input()

command = reply.split()
print(f"[DEBUG] Your command: { command }")

action = command[0]
obj = command[1]

print(f"[DEBUG] Your action: { action }")
print(f"[DEBUG] Your object: { obj }")

The object is stored as a variable now (obj), which we can use

to read the clue from the dictionary:

In []:if "read" in action:
 print(clues[obj])

And like the other actions, you can store this as a function called

read:

In []:def read(obj):
 if obj in clues:
 message = clues[obj]
 else:
 message = f"You can't read { obj }"

 return message

print(message)
reply = input()

if "get lamp" in reply:
 print("You turn on the light, and wow! Did you see
that?")
else:
 print("The cave is still damp... what is this thing
in your right hand?")

I…clues = {
 "lamp" : "There is a small note scribled on the
bottom of the lamp: 'check breadcube!' it says.
Hmm...",
 "breadcube" : "You turn breadcube on... luckily
you remember the root password by heart. The welcome
message shows up on the screen: FIT LIKES COFFEE!",
 "cup" : "The cup is empty, someone else seemed
to have poored coffee to FIT already... Hmm... You
take the cup. Underneath it is a book.",
 "book" : "The book is called 'The hidden secrets
of the ultra-smart-sensor-device for the XPUB
studio'. Hmm..."
}

We can make the code return these clues to the player.

So for example, when you type read lamp , the clue is printed on

the screen.

We can write it like this:

In []: clues["lamp"]

But to connect the object that is mentioned in the reply to the

dictionary, we need to parse the reply, so we know what is the

action and what is the object .

Open a terminal, navigate to the folder where you saved the

Python file, and run the script with:

$ python3 adventures.py or python adventures.py or

py adventures.py (depending on your computer)

Try to play the game first, and have a look at the code afterwards.

Good practice is to annotate the code step-by-step, to see if you

can follow what is happening.

Non-linear approach

Make another script and call it something else, for example

xpub.py.

Copy the code from below and run the script to see what it does.

In []:welcome_message = "You are in the XPUB studio."

print(welcome_message)

while True:
 reply = input()

Not a single reply (using if/else)

How to handle multiple possible replies? For this we can use if/

else statements.

We can use if, elif and else to respond to multiple

possible replies:

Store information about objects (using
dictionaries)

If we want to store information about the objects, we can use a

dictionary.

Dictionaries are used to store data in key : value pairs.

keys and values can be strings or numbers. But they can

also be a list, tuple or dictionary (dictionary in a dictionary). It

really depends on what data you want to store!

In []:candy = {
 "type" : "drop",
 "shapes" : ["round", "square", "triangle"],
 "left" : 10,
 "brands" : {
 "haribo" : "not so nice",
 "klene" : "not too bad",
 "oldtimers" : "jummy"
 }
}

You can read the information from the dictionary like this:

In []:candy["type"]

Back to the text-adventure game...

It would be useful to store information about each of the objects,

so let's make a dictionary and store it there.

Let's say that the objects are important for the game. They hold

hidden clues that the player can read:

I… message = "What do you want to do?"
print(message)
reply = input()

if "look" in reply:
 print("Return what happens when you 'look'.")
elif "bag" in reply:
 print("Return what happens when you open your
bag.")
elif "get" in reply:
 print("Return what happens when you 'go'.")
elif "read" in reply:
 print("Return what happens when you 'read'.")
elif "exit" in reply:
 print("Return what happens when you want to exit
the game.")
else:
 print("Return what happens when the action is
not built into the game, for example by saying:
'Hmm, not sure how to do that?'")

Recurrent actions (using functions)

In programming it is very common to reuse the same lines of code

in your script.

You can just copy and paste these lines, which is maybe the

easiest way to do it! (And it's perfectly fine to do it in this way!)

But...

if you want to be lazy... :--), or if you want to repeat some

programmatic behavior, you can also use a function.

A function in Python is written in the following way:

With these variables, we can make functions for the actions

look , openBag and get :

In [… def look():
 message = f"""
 There are so many Apple computers here, but
they're all locked.
 What else is here? { room }
 """
 return message

def openBag():
 message = f"""
 Your bag currently holds: { bag }
 """
 return message

def get(obj):
 if obj in room:
 room.remove(obj)
 bag.append(obj)
 print(f"[DEBUG] Currently in the room: {
room }")
 print(f"[DEBUG] Currently in the bag: {
bag }")
 message = f"Added { obj } to your bag!"
 else:
 message = f"There is no { obj } here."

 return message

In []:def functionName():
 message = "hello!"
 return message

The required elements are:

the word def

a functionName

the ()

the :

and a return statement

Once you have written a function, you can use it in this way:

•

•

•

•

•

In []:functionName()

So when we want to write a function that returns a description of

the room when you say look:

In …def look():
 message = "There are so many Apple computers
here, but they're all locked."
 return message

In []:look()

Let's insert that into the code from above:

In []:while True:
 message = "What do you want to do?"
 print(message)
 reply = input()

 if "exit" in reply:
 break

Making and storing objects (using
variables and lists)

To work with objects and rooms, we need to define them and store

information about them.

To do this, we can use variables and lists.

For example, let's say that we call things that you can interact with

objects.

When the game starts, there are 3 objects in the room (the XPUB

studio) and 1 already in your bag (the lamp).

In []:room = ["breadcube", "cup", "book"]
bag = ["lamp"]

To add an object into your bag we can use .append():

In []:bag.append("breadcube")

In []:bag

To remove an object from your bag we can use .remove():

In []:bag.remove("breadcube")

In []:bag

I… message = "What do you want to do?"
print(message)
reply = input()

if "look" in reply:
 print(look())
elif "bag" in reply:
 print("Return what happens when you open your
bag.")
elif "get" in reply:
 print("Return what happens when you 'go'.")
elif "read" in reply:
 print("Return what happens when you 'read'.")
elif "exit" in reply:
 print("Return what happens when you want to exit
the game.")
else:
 print("Return what happens when the action is
not built into the game, for example by saying:
'Hmm, not sure how to do that?'")

But! There is more...

Functions do not have to return static content... You can use a

function to execute lines of code for you.

Think of it as wrapping code in a box, that you give a name.

For example: we can write a bit of code that uses

random.choice() and let a function return a random reply from

a list.

In [… from random import choice

def randomDefaultReply():
 replies = [
 "Hmm, not sure how to do that?",
 "There is so much you can do, but this
ain't one.",
 "Eh?"
]
 return choice(replies)

And let's use it in the same code again:

In [… message = "What do you want to do?"
print(message)
reply = input()

if "look" in reply:
 print(look())
elif "bag" in reply:
 print("Return what happens when you open your
bag.")
elif "get" in reply:
 print("Return what happens when you 'go'.")
elif "read" in reply:
 print("Return what happens when you 'read'.")
elif "exit" in reply:
 print("Return what happens when you want to
exit the game.")
else:
 print(randomDefaultReply())

In the same way, we can make a function for each action (look ,

openBag , get , read).

The exit action is a special one. Because we use a while

loop, you can use the special word break to stop the game:

