
xpub
T4PP

UNIX and Scriptable workflows

Oct 2016

Two	Bits:	The	Cultural	Significance	of	Free	Software
Type Book
Author Christopher	M.	Kelty
Publisher Duke	University	Press
Date 208

Date	Added 10/24/2016,	11:07:55	AM
Modified 10/24/2016,	11:09:14	AM

Notes:

UNIX	History
M.	Kelty,	Christopher.	Two	Bits:	The	Cultural	Significance	of	Free	Software.	Duke	University	Press,	208AD.

pp.125-142	(142-159)

pdftk	Two\	Bits_\	The\	Cultural\	Significance\	of\	Fre\	-\	Christopher\	M.\	Kelty.pdf	cat	142-159	output	TowBit-HistoryUnix.pdf

Attachments

TowBit-HistoryUnix.pdf

125sharing source code

Portability in the business world meant something specific,
however. Even if software could be made portable at a technical
level—transferable between two different IBM machines—this was
certainly no guarantee that it would be portable between custom-
ers. One company’s accounting program, for example, may not suit
another’s practices. Portability was therefore hindered both by the
diversity of machine architectures and by the diversity of business
practices and organization. IBM and other manufacturers therefore
saw no benefit to standardizing source code, as it could only pro-
vide an advantage to competitors.15

Portability was thus not simply a technical problem—the problem
of running one program on multiple architectures—but also a kind
of political-economic problem. The meaning of product was not al-
ways the same as the meaning of hardware or software, but was usu-
ally some combination of the two. At that early stage, the outlines
of a contest over the meaning of portable or shareable source code
are visible, both in the technical challenges of creating high-level
languages and in the political-economic challenges that corpora-
tions faced in creating distinctive proprietary products.

The UNIX Time-Sharing System

Set against this backdrop, the invention, success, and proliferation
of the UNIX operating system seems quite monstrous, an aberration
of both academic and commercial practice that should have failed
in both realms, instead of becoming the most widely used portable
operating system in history and the very paradigm of an “operating
system” in general. The story of UNIX demonstrates how portability
became a reality and how the particular practice of sharing UNIX
source code became a kind of de facto standard in its wake.

UNIX was first written in 1969 by Ken Thompson and Dennis
Ritchie at Bell Telephone Labs in Murray Hill, New Jersey. UNIX
was the dénouement of the MIT project Multics, which Bell Labs
had funded in part and to which Ken Thompson had been assigned.
Multics was one of the earliest complete time-sharing operating sys-
tems, a demonstration platform for a number of early innovations
in time-sharing (multiple simultaneous users on one computer).16 By
1968, Bell Labs had pulled its support—including Ken Thompson—
from the project and placed him back in Murray Hill, where he and

126 sharing source code

Dennis Ritchie were stuck without a machine, without any money,
and without a project. They were specialists in operating systems,
languages, and machine architecture in a research group that had
no funding or mandate to pursue these areas. Through the creative
use of some discarded equipment, and in relative isolation from the
rest of the lab, Thompson and Ritchie created, in the space of about
two years, a complete operating system, a programming language
called C, and a host of tools that are still in extremely wide use
today. The name UNIX (briefly, UNICS) was, among other things,
a puerile pun: a castrated Multics.

The absence of an economic or corporate mandate for Thomp-
son’s and Ritchie’s creativity and labor was not unusual for Bell
Labs; researchers were free to work on just about anything, so long
as it possessed some kind of vague relation to the interests of AT&T.
However, the lack of funding for a more powerful machine did
restrict the kind of work Thompson and Ritchie could accomplish.
In particular, it influenced the design of the system, which was ori-
ented toward a super-slim control unit (a kernel) that governed the
basic operation of the machine and an expandable suite of small,
independent tools, each of which did one thing well and which
could be strung together to accomplish more complex and powerful
tasks.17 With the help of Joseph Ossana, Douglas McIlroy, and oth-
ers, Thompson and Ritchie eventually managed to agitate for a new
PDP-11/20 based not on the technical merits of the UNIX operating
system itself, but on its potential applications, in particular, those
of the text-preparation group, who were interested in developing
tools for formatting, typesetting, and printing, primarily for the
purpose of creating patent applications, which was, for Bell Labs,
and for AT&T more generally, obviously a laudable goal.18

UNIX was unique for many technical reasons, but also for a spe-
cific economic reason: it was never quite academic and never quite
commercial. Martin Campbell-Kelly notes that UNIX was a “non-
proprietary operating system of major significance.”19 Kelly’s use
of “non-proprietary” is not surprising, but it is incorrect. Although
business-speak regularly opposed open to proprietary throughout the
1980s and early 1990s (and UNIX was definitely the former), Kelly’s
slip marks clearly the confusion between software ownership and
software distribution that permeates both popular and academic
understandings. UNIX was indeed proprietary—it was copyrighted
and wholly owned by Bell Labs and in turn by Western Electric

127sharing source code

and AT&T—but it was not exactly commercialized or marketed by
them. Instead, AT&T allowed individuals and corporations to in-
stall UNIX and to create UNIX-like derivatives for very low licensing
fees. Until about 1982, UNIX was licensed to academics very widely
for a very small sum: usually royalty-free with a minimal service
charge (from about $150 to $800).20 The conditions of this license
allowed researchers to do what they liked with the software so long
as they kept it secret: they could not distribute or use it outside of
their university labs (or use it to create any commercial product
or process), nor publish any part of it. As a result, throughout the
1970s UNIX was developed both by Thompson and Ritchie inside
Bell Labs and by users around the world in a relatively informal
manner. Bell Labs followed such a liberal policy both because it
was one of a small handful of industry-academic research and de-
velopment centers and because AT&T was a government monopoly
that provided phone service to the country and was therefore for-
bidden to directly enter the computer software market.21

Being on the border of business and academia meant that UNIX
was, on the one hand, shielded from the demands of management
and markets, allowing it to achieve the conceptual integrity that
made it so appealing to designers and academics. On the other,
it also meant that AT&T treated it as a potential product in the
emerging software industry, which included new legal questions
from a changing intellectual-property regime, novel forms of mar-
keting and distribution, and new methods of developing, support-
ing, and distributing software.

Despite this borderline status, UNIX was a phenomenal success.
The reasons why UNIX was so popular are manifold; it was widely
admired aesthetically, for its size, and for its clever design and
tools. But the fact that it spread so widely and quickly is testament
also to the existing community of eager computer scientists and en-
gineers (and a few amateurs) onto which it was bootstrapped, users
for whom a powerful, flexible, low-cost, modifiable, and fast oper-
ating system was a revelation of sorts. It was an obvious alternative
to the complex, poorly documented, buggy operating systems that
routinely shipped standard with the machines that universities and
research organizations purchased. “It worked,” in other words.

A key feature of the popularity of UNIX was the inclusion of the
source code. When Bell Labs licensed UNIX, they usually provided
a tape that contained the documentation (i.e., documentation that

128 sharing source code

was part of the system, not a paper technical manual external to
it), a binary version of the software, and the source code for the
software. The practice of distributing the source code encouraged
people to maintain it, extend it, document it—and to contribute
those changes to Thompson and Ritchie as well. By doing so, users
developed an interest in maintaining and supporting the project
precisely because it gave them an opportunity and the tools to use
their computer creatively and flexibly. Such a globally distributed
community of users organized primarily by their interest in main-
taining an operating system is a precursor to the recursive public,
albeit confined to the world of computer scientists and researchers
with access to still relatively expensive machines. As such, UNIX
was not only a widely shared piece of quasi-commercial software
(i.e., distributed in some form other than through a price-based re-
tail market), but also the first to systematically include the source
code as part of that distribution as well, thus appealing more to
academics and engineers.22

Throughout the 1970s, the low licensing fees, the inclusion of
the source code, and its conceptual integrity meant that UNIX was
ported to a remarkable number of other machines. In many ways,
academics found it just as appealing, if not more, to be involved in
the creation and improvement of a cutting-edge system by licens-
ing and porting the software themselves, rather than by having it
provided to them, without the source code, by a company. Peter
Salus, for instance, suggests that people experienced the lack of
support from Bell Labs as a kind of spur to develop and share their
own fixes. The means by which source code was shared, and the
norms and practices of sharing, porting, forking, and modifying
source code were developed in this period as part of the develop-
ment of UNIX itself—the technical design of the system facilitates
and in some cases mirrors the norms and practices of sharing that
developed: operating systems and social systems.23

Sharing UNIX

Over the course of 1974–77 the spread and porting of UNIX was
phenomenal for an operating system that had no formal system of
distribution and no official support from the company that owned
it, and that evolved in a piecemeal way through the contributions

129sharing source code

of people from around the world. By 1975, a user’s group had de-
veloped: USENIX.24 UNIX had spread to Canada, Europe, Australia,
and Japan, and a number of new tools and applications were being
both independently circulated and, significantly, included in the
frequent releases by Bell Labs itself. All during this time, AT&T’s li-
censing department sought to find a balance between allowing this
circulation and innovation to continue, and attempting to maintain
trade-secret status for the software. UNIX was, by 1980, without a
doubt the most widely and deeply understood trade secret in com-
puting history.

The manner in which the circulation of and contribution to UNIX
occurred is not well documented, but it includes both technical and
pedagogical forms of sharing. On the technical side, distribution
took a number of forms, both in resistance to AT&T’s attempts to
control it and facilitated by its unusually liberal licensing of the
software. On the pedagogical side, UNIX quickly became a para-
digmatic object for computer-science students precisely because it
was a working operating system that included the source code and
that was simple enough to explore in a semester or two.

In A Quarter Century of UNIX Salus provides a couple of key sto-
ries (from Ken Thompson and Lou Katz) about how exactly the
technical sharing of UNIX worked, how sharing, porting, and fork-
ing can be distinguished, and how it was neither strictly legal nor
deliberately illegal in this context. First, from Ken Thompson: “The
first thing to realize is that the outside world ran on releases of
UNIX (V4, V5, V6, V7) but we did not. Our view was a continuum.
V5 was what we had at some point in time and was probably out
of date simply by the activity required to put it in shape to export.
After V6, I was preparing to go to Berkeley to teach for a year. I
was putting together a system to take. Since it was almost a release,
I made a diff with V6 [a tape containing only the differences be-
tween the last release and the one Ken was taking with him]. On
the way to Berkeley I stopped by Urbana-Champaign to keep an eye
on Greg Chesson. . . . I left the diff tape there and I told him that I
wouldn’t mind if it got around.”25

The need for a magnetic tape to “get around” marks the differ-
ence between the 1970s and the present: the distribution of soft-
ware involved both the material transport of media and the digital
copying of information. The desire to distribute bug fixes (the “diff ”
tape) resonates with the future emergence of Free Software: the

130 sharing source code

fact that others had fixed problems and contributed them back to
Thompson and Ritchie produced an obligation to see that the fixes
were shared as widely as possible, so that they in turn might be
ported to new machines. Bell Labs, on the other hand, would have
seen this through the lens of software development, requiring a new
release, contract renegotiation, and a new license fee for a new ver-
sion. Thompson’s notion of a “continuum,” rather than a series of
releases also marks the difference between the idea of an evolving
common set of objects stewarded by multiple people in far-flung
locales and the idea of a shrink-wrapped “productized” software
package that was gaining ascendance as an economic commodity
at the same time. When Thompson says “the outside world,” he is
referring not only to people outside of Bell Labs but to the way the
world was seen from within Bell Labs by the lawyers and marketers
who would create a new version. For the lawyers, the circulation of
source code was a problem because it needed to be stabilized, not
so much for commercial reasons as for legal ones—one license for
one piece of software. Distributing updates, fixes, and especially
new tools and additions written by people who were not employed
by Bell Labs scrambled the legal clarity even while it strengthened
the technical quality. Lou Katz makes this explicit.

A large number of bug fixes was collected, and rather than issue them
one at a time, a collection tape (“the 50 fixes”) was put together by
Ken [the same “diff tape,” presumably]. Some of the fixes were quite
important, though I don’t remember any in particular. I suspect that a
significant fraction of the fixes were actually done by non-Bell people. Ken
tried to send it out, but the lawyers kept stalling and stalling and stall-
ing. Finally, in complete disgust, someone “found a tape on Mountain
Avenue” [the location of Bell Labs] which had the fixes. When the
lawyers found out about it, they called every licensee and threatened
them with dire consequences if they didn’t destroy the tape, after try-
ing to find out how they got the tape. I would guess that no one would
actually tell them how they came by the tape (I didn’t).26

Distributing the fixes involved not just a power struggle between
the engineers and management, but was in fact clearly motivated
by the fact that, as Katz says, “a significant fraction of the fixes
were done by non-Bell people.” This meant two things: first, that
there was an obvious incentive to return the updated system to these

131sharing source code

people and to others; second, that it was not obvious that AT&T
actually owned or could claim rights over these fixes—or, if they
did, they needed to cover their legal tracks, which perhaps in part
explains the stalling and threatening of the lawyers, who may have
been buying time to make a “legal” version, with the proper per-
missions.

The struggle should be seen not as one between the rebel forces
of UNIX development and the evil empire of lawyers and manag-
ers, but as a struggle between two modes of stabilizing the object
known as UNIX. For the lawyers, stability implied finding ways to
make UNIX look like a product that would meet the existing legal
framework and the peculiar demands of being a regulated monop-
oly unable to freely compete with other computer manufacturers;
the ownership of bits and pieces, ideas and contributions had to be
strictly accountable. For the programmers, stability came through
redistributing the most up-to-date operating system and sharing
all innovations with all users so that new innovations might also
be portable. The lawyers saw urgency in making UNIX legally sta-
ble; the engineers saw urgency in making UNIX technically stable
and compatible with itself, that is, to prevent the forking of UNIX,
the death knell for portability. The tension between achieving
legal stability of the object and promoting its technical portability
and stability is one that has repeated throughout the life of UNIX
and its derivatives—and that has ramifications in other areas as
well.

The identity and boundaries of UNIX were thus intricately formed
through its sharing and distribution. Sharing produced its own form
of moral and technical order. Troubling questions emerged imme-
diately: were the versions that had been fixed, extended, and ex-
panded still UNIX, and hence still under the control of AT&T? Or
were the differences great enough that something else (not-UNIX)
was emerging? If a tape full of fixes, contributed by non-Bell em-
ployees, was circulated to people who had licensed UNIX, and those
fixes changed the system, was it still UNIX? Was it still UNIX in a
legal sense or in a technical sense or both? While these questions
might seem relatively scholastic, the history of the development
of UNIX suggests something far more interesting: just about every
possible modification has been made, legally and technically, but
the concept of UNIX has remained remarkably stable.

132 sharing source code

Porting UNIX

Technical portability accounts for only part of UNIX’s success. As
a pedagogical resource, UNIX quickly became an indispensable
tool for academics around the world. As it was installed and im-
proved, it was taught and learned. The fact that UNIX spread first
to university computer-science departments, and not to businesses,
government, or nongovernmental organizations, meant that it also
became part of the core pedagogical practice of a generation of
programmers and computer scientists; over the course of the 1970s
and 1980s, UNIX came to exemplify the very concept of an operat-
ing system, especially time-shared, multi-user operating systems.
Two stories describe the porting of UNIX from machines to minds
and illustrate the practice as it developed and how it intersected
with the technical and legal attempts to stabilize UNIX as an ob-
ject: the story of John Lions’s Commentary on Unix 6th Edition and
the story of Andrew Tanenbaum’s Minix.

The development of a pedagogical UNIX lent a new stability to
the concept of UNIX as opposed to its stability as a body of source
code or as a legal entity. The porting of UNIX was so successful that
even in cases where a ported version of UNIX shares none of the same
source code as the original, it is still considered UNIX. The monstrous
and promiscuous nature of UNIX is most clear in the stories of Lions
and Tanenbaum, especially when contrasted with the commercial,
legal, and technical integrity of something like Microsoft Windows,
which generally exists in only a small number of forms (NT, ME,
XP, 95, 98, etc.), possessing carefully controlled source code, im-
mured in legal protection, and distributed only through sales and
service packs to customers or personal-computer manufacturers.
While Windows is much more widely used than UNIX, it is far from
having become a paradigmatic pedagogical object; its integrity is
predominantly legal, not technical or pedagogical. Or, in pedagogi-
cal terms, Windows is to fish as UNIX is to fishing lessons.

Lions’s Commentary is also known as “the most photocopied doc-
ument in computer science.” Lions was a researcher and senior
lecturer at the University of New South Wales in the early 1970s;
after reading the first paper by Ritchie and Thompson on UNIX, he
convinced his colleagues to purchase a license from AT&T.27 Lions,
like many researchers, was impressed by the quality of the system,
and he was, like all of the UNIX users of that period, intimately

133sharing source code

familiar with the UNIX source code—a necessity in order to install,
run, or repair it. Lions began using the system to teach his classes
on operating systems, and in the course of doing so he produced
a textbook of sorts, which consisted of the entire source code of
UNIX version 6 (V6), along with elaborate, line-by-line commen-
tary and explanation. The value of this textbook can hardly be
underestimated. Access to machines and software that could be
used to understand how a real system worked was very limited:
“Real computers with real operating systems were locked up in
machine rooms and committed to processing twenty four hours a
day. UNIX changed that.”28 Berny Goodheart, in an appreciation of
Lions’s Commentary, reiterated this sense of the practical usefulness
of the source code and commentary: “It is important to understand
the significance of John’s work at that time: for students study-
ing computer science in the 1970s, complex issues such as process
scheduling, security, synchronization, file systems and other con-
cepts were beyond normal comprehension and were extremely diffi-
cult to teach—there simply wasn’t anything available with enough
accessibility for students to use as a case study. Instead a student’s
discipline in computer science was earned by punching holes in
cards, collecting fan-fold paper printouts, and so on. Basically, a
computer operating system in that era was considered to be a huge
chunk of inaccessible proprietary code.”29

Lions’s commentary was a unique document in the world of com-
puter science, containing a kind of key to learning about a central
component of the computer, one that very few people would have
had access to in the 1970s. It shows how UNIX was ported not only
to machines (which were scarce) but also to the minds of young
researchers and student programmers (which were plentiful). Sev-
eral generations of both academic computer scientists and students
who went on to work for computer or software corporations were
trained on photocopies of UNIX source code, with a whiff of toner
and illicit circulation: a distributed operating system in the textual
sense.

Unfortunately, Commentary was also legally restricted in its dis-
tribution. AT&T and Western Electric, in hopes that they could
maintain trade-secret status for UNIX, allowed only very limited
circulation of the book. At first, Lions was given permission to dis-
tribute single copies only to people who already possessed a license
for UNIX V6; later Bell Labs itself would distribute Commentary

134 sharing source code

briefly, but only to licensed users, and not for sale, distribution,
or copying. Nonetheless, nearly everyone seems to have possessed
a dog-eared, nth-generation copy. Peter Reintjes writes, “We soon
came into possession of what looked like a fifth generation photo-
copy and someone who shall remain nameless spent all night in
the copier room spawning a sixth, an act expressly forbidden by
a carefully worded disclaimer on the first page. Four remarkable
things were happening at the same time. One, we had discovered
the first piece of software that would inspire rather than annoy
us; two, we had acquired what amounted to a literary criticism
of that computer software; three, we were making the single most
significant advancement of our education in computer science by
actually reading an entire operating system; and four, we were
breaking the law.”30

Thus, these generations of computer-science students and aca-
demics shared a secret—a trade secret become open secret. Every
student who learned the essentials of the UNIX operating sys-
tem from a photocopy of Lions’s commentary, also learned about
AT&T’s attempt to control its legal distribution on the front cover
of their textbook. The parallel development of photocopying has a
nice resonance here; together with home cassette taping of music
and the introduction of the video-cassette recorder, photocopying
helped drive the changes to copyright law adopted in 1976.

Thirty years later, and long after the source code in it had been
completely replaced, Lions’s Commentary is still widely admired by
geeks. Even though Free Software has come full circle in providing
students with an actual operating system that can be legally stud-
ied, taught, copied, and implemented, the kind of “literary criticism”
that Lions’s work represents is still extremely rare; even reading ob-
solete code with clear commentary is one of the few ways to truly
understand the design elements and clever implementations that
made the UNIX operating system so different from its predecessors
and even many of its successors, few, if any of which have been so
successfully ported to the minds of so many students.

Lions’s Commentary contributed to the creation of a worldwide
community of people whose connection to each other was formed
by a body of source code, both in its implemented form and in its
textual, photocopied form. This nascent recursive public not only
understood itself as belonging to a technical elite which was consti-
tuted by its creation, understanding, and promotion of a particular

135sharing source code

technical tool, but also recognized itself as “breaking the law,” a
community constituted in opposition to forms of power that gov-
erned the circulation, distribution, modification, and creation of
the very tools they were learning to make as part of their vocation.
The material connection shared around the world by UNIX-loving
geeks to their source code is not a mere technical experience, but a
social and legal one as well.

Lions was not the only researcher to recognize that teaching the
source code was the swiftest route to comprehension. The other
story of the circulation of source code concerns Andrew Tanenbaum,
a well-respected computer scientist and an author of standard text-
books on computer architecture, operating systems, and network-
ing.31 In the 1970s Tanenbaum had also used UNIX as a teaching
tool in classes at the Vrije Universiteit, in Amsterdam. Because the
source code was distributed with the binary code, he could have his
students explore directly the implementations of the system, and he
often used the source code and the Lions book in his classes. But, ac-
cording to his Operating Systems: Design and Implementation (1987),
“When AT&T released Version 7 [ca. 1979], it began to realize that
UNIX was a valuable commercial product, so it issued Version 7
with a license that prohibited the source code from being studied in
courses, in order to avoid endangering its status as a trade secret.
Many universities complied by simply dropping the study of UNIX,
and teaching only theory” (13). For Tanenbaum, this was an unac-
ceptable alternative—but so, apparently, was continuing to break
the law by teaching UNIX in his courses. And so he proceeded to
create a completely new UNIX-like operating system that used not
a single line of AT&T source code. He called his creation Minix. It
was a stripped-down version intended to run on personal computers
(IBM PCs), and to be distributed along with the textbook Operating
Systems, published by Prentice Hall.32

Minix became as widely used in the 1980s as a teaching tool as
Lions’s source code had been in the 1970s. According to Tanen-
baum, the Usenet group comp.os.minix had reached 40,000 mem-
bers by the late 1980s, and he was receiving constant suggestions
for changes and improvements to the operating system. His own
commitment to teaching meant that he incorporated few of these
suggestions, an effort to keep the system simple enough to be
printed in a textbook and understood by undergraduates. Minix

136 sharing source code

was freely available as source code, and it was a fully function-
ing operating system, even a potential alternative to UNIX that
would run on a personal computer. Here was a clear example of the
conceptual integrity of UNIX being communicated to another gen-
eration of computer-science students: Tanenbaum’s textbook is not
called “UNIX Operating Systems”—it is called Operating Systems.
The clear implication is that UNIX represented the clearest example
of the principles that should guide the creation of any operating
system: it was, for all intents and purposes, state of the art even
twenty years after it was first conceived.

Minix was not commercial software, but nor was it Free Soft-
ware. It was copyrighted and controlled by Tanenbaum’s publisher,
Prentice Hall. Because it used no AT&T source code, Minix was also
legally independent, a legal object of its own. The fact that it was
intended to be legally distinct from, yet conceptually true to UNIX
is a clear indication of the kinds of tensions that govern the cre-
ation and sharing of source code. The ironic apotheosis of Minix as
the pedagogical gold standard for studying UNIX came in 1991–92,
when a young Linus Torvalds created a “fork” of Minix, also rewrit-
ten from scratch, that would go on to become the paradigmatic
piece of Free Software: Linux. Tanenbaum’s purpose for Minix was
that it remain a pedagogically useful operating system—small,
concise, and illustrative—whereas Torvalds wanted to extend and
expand his version of Minix to take full advantage of the kinds of
hardware being produced in the 1990s. Both, however, were com-
mitted to source-code visibility and sharing as the swiftest route to
complete comprehension of operating-systems principles.

Forking UNIX

Tanenbaum’s need to produce Minix was driven by a desire to share
the source code of UNIX with students, a desire AT&T was mani-
festly uncomfortable with and which threatened the trade-secret
status of their property. The fact that Minix might be called a fork
of UNIX is a key aspect of the political economy of operating sys-
tems and social systems. Forking generally refers to the creation of
new, modified source code from an original base of source code,
resulting in two distinct programs with the same parent. Whereas
the modification of an engine results only in a modified engine, the

137sharing source code

modification of source code implies differentiation and reproduc-
tion, because of the ease with which it can be copied.

How could Minix—a complete rewrite—still be considered the
same object? Considered solely from the perspective of trade-secret
law, the two objects were distinct, though from the perspective
of copyright there was perhaps a case for infringement, although
AT&T did not rely on copyright as much as on trade secret. From
a technical perspective, the functions and processes that the soft-
ware accomplishes are the same, but the means by which they are
coded to do so are different. And from a pedagogical standpoint,
the two are identical—they exemplify certain core features of an
operating system (file-system structure, memory paging, process
management)—all the rest is optimization, or bells and whistles.
Understanding the nature of forking requires also that UNIX be
understood from a social perspective, that is, from the perspective
of an operating system created and modified by user-developers
around the world according to particular and partial demands. It
forms the basis for the emergence of a robust recursive public.

One of the more important instances of the forking of UNIX’s
perambulatory source code and the developing community of UNIX
co-developers is the story of the Berkeley Software Distribution and
its incorporation of the TCP/IP protocols. In 1975 Ken Thompson
took a sabbatical in his hometown of Berkeley, California, where
he helped members of the computer-science department with their
installations of UNIX, arriving with V6 and the “50 bug fixes” diff
tape. Ken had begun work on a compiler for the Pascal program-
ming language that would run on UNIX, and this work was taken
up by two young graduate students: Bill Joy and Chuck Hartley.
(Joy would later co-found Sun Microsystems, one of the most suc-
cessful UNIX-based workstation companies in the history of the
industry.)

Joy, above nearly all others, enthusiastically participated in the
informal distribution of source code. With a popular and well-built
Pascal system, and a new text editor called ex (later vi), he created
the Berkeley Software Distribution (BSD), a set of tools that could
be used in combination with the UNIX operating system. They were
extensions to the original UNIX operating system, but not a com-
plete, rewritten version that might replace it. By all accounts, Joy
served as a kind of one-man software-distribution house, making
tapes and posting them, taking orders and cashing checks—all in

138 sharing source code

addition to creating software.33 UNIX users around the world soon
learned of this valuable set of extensions to the system, and be-
fore long, many were differentiating between AT&T UNIX and BSD
UNIX.

According to Don Libes, Bell Labs allowed Berkeley to distribute its
extensions to UNIX so long as the recipients also had a license from
Bell Labs for the original UNIX (an arrangement similar to the one
that governed Lions’s Commentary).34 From about 1976 until about
1981, BSD slowly became an independent distribution—indeed, a
complete version of UNIX—well-known for the vi editor and the
Pascal compiler, but also for the addition of virtual memory and its
implementation on DEC’s VAX machines.35 It should be clear that
the unusual quasi-commercial status of AT&T’s UNIX allowed for
this situation in a way that a fully commercial computer corpora-
tion would never have allowed. Consider, for instance, the fact that
many UNIX users—students at a university, for instance—could
not essentially know whether they were using an AT&T product
or something called BSD UNIX created at Berkeley. The operating
system functioned in the same way and, except for the presence of
copyright notices that occasionally flashed on the screen, did not
make any show of asserting its brand identity (that would come
later, in the 1980s). Whereas a commercial computer manufacturer
would have allowed something like BSD only if it were incorpo-
rated into and distributed as a single, marketable, and identifiable
product with a clever name, AT&T turned something of a blind eye
to the proliferation and spread of AT&T UNIX and the result were
forks in the project: distinct bodies of source code, each an instance
of something called UNIX.

As BSD developed, it gained different kinds of functionality than
the UNIX from which it was spawned. The most significant develop-
ment was the inclusion of code that allowed it to connect computers
to the Arpanet, using the TCP/IP protocols designed by Vinton Cerf
and Robert Kahn. The TCP/IP protocols were a key feature of the
Arpanet, overseen by the Information Processing and Techniques
Office (IPTO) of the Defense Advanced Research Projects Agency
(DARPA) from its inception in 1967 until about 1977. The goal of
the protocols was to allow different networks, each with its own
machines and administrative boundaries, to be connected to each
other.36 Although there is a common heritage—in the form of J. C. R.
Licklider—which ties the imagination of the time-sharing operat-

139sharing source code

ing system to the creation of the “galactic network,” the Arpanet
initially developed completely independent of UNIX.37 As a time-
sharing operating system, UNIX was meant to allow the sharing of
resources on a single computer, whether mainframe or minicom-
puter, but it was not initially intended to be connected to a network
of other computers running UNIX, as is the case today.38 The goal
of Arpanet, by contrast, was explicitly to achieve the sharing of
resources located on diverse machines across diverse networks.

To achieve the benefits of TCP/IP, the resources needed to be
implemented in all of the different operating systems that were con-
nected to the Arpanet—whatever operating system and machine
happened to be in use at each of the nodes. However, by 1977, the
original machines used on the network were outdated and increas-
ingly difficult to maintain and, according to Kirk McKusick, the
greatest expense was that of porting the old protocol software to
new machines. Hence, IPTO decided to pursue in part a strategy
of achieving coordination at the operating-system level, and they
chose UNIX as one of the core platforms on which to standardize.
In short, they had seen the light of portability. In about 1978 IPTO
granted a contract to Bolt, Beranek, and Newman (BBN), one of the
original Arpanet contractors, to integrate the TCP/IP protocols into
the UNIX operating system.

But then something odd happened, according to Salus: “An initial
prototype was done by BBN and given to Berkeley. Bill [Joy] im-
mediately started hacking on it because it would only run an Eth-
ernet at about 56K/sec utilizing 100% of the CPU on a 750. . . . Bill
lobotomized the code and increased its performance to on the order
of 700KB/sec. This caused some consternation with BBN when they
came in with their ‘finished’ version, and Bill wouldn’t accept it.
There were battles for years after, about which version would be in
the system. The Berkeley version ultimately won.”39

Although it is not clear, it appears BBN intended to give Joy
the code in order to include it in his BSD version of UNIX for dis-
tribution, and that Joy and collaborators intended to cooperate
with Rob Gurwitz of BBN on a final implementation, but Berkeley
insisted on “improving” the code to make it perform more to their
needs, and BBN apparently dissented from this.40 One result of this
scuffle between BSD and BBN was a genuine fork: two bodies of
code that did the same thing, competing with each other to become
the standard UNIX implementation of TCP/IP. Here, then, was a

140 sharing source code

case of sharing source code that led to the creation of different ver-
sions of software—sharing without collaboration. Some sites used
the BBN code, some used the Berkeley code.

Forking, however, does not imply permanent divergence, and the
continual improvement, porting, and sharing of software can have
odd consequences when forks occur. On the one hand, there are par-
ticular pieces of source code: they must be identifiable and exact, and
prepended with a copyright notice, as was the case of the Berkeley
code, which was famously and vigorously policed by the University
of California regents, who allowed for a very liberal distribution of
BSD code on the condition that the copyright notice was retained.
On the other hand, there are particular named collections of code
that work together (e.g., UNIX™, or DARPA-approved UNIX, or
later, Certified Open Source [sm]) and are often identified by a
trademark symbol intended, legally speaking, to differentiate prod-
ucts, not to assert ownership of particular instances of a product.

The odd consequence is this: Bill Joy’s specific TCP/IP code was
incorporated not only into BSD UNIX, but also into other versions
of UNIX, including the UNIX distributed by AT&T (which had origi-
nally licensed UNIX to Berkeley) with the Berkeley copyright notice
removed. This bizarre, tangled bank of licenses and code resulted
in a famous suit and countersuit between AT&T and Berkeley, in
which the intricacies of this situation were sorted out.41 An innocent
bystander, expecting UNIX to be a single thing, might be surprised
to find that it takes different forms for reasons that are all but
impossible to identify, but the cause of which is clear: different ver-
sions of sharing in conflict with one another; different moral and
technical imaginations of order that result in complex entangle-
ments of value and code.

The BSD fork of UNIX (and the subfork of TCP/IP) was only one
of many to come. By the early 1980s, a proliferation of UNIX forks
had emerged and would be followed shortly by a very robust com-
mercialization. At the same time, the circulation of source code
started to slow, as corporations began to compete by adding fea-
tures and creating hardware specifically designed to run UNIX
(such as the Sun Sparc workstation and the Solaris operating sys-
tem, the result of Joy’s commercialization of BSD in the 1980s). The
question of how to make all of these versions work together eventu-
ally became the subject of the open-systems discussions that would
dominate the workstation and networking sectors of the computer

141sharing source code

market from the early 1980s to 1993, when the dual success of Win-
dows NT and the arrival of the Internet into public consciousness
changed the fortunes of the UNIX industry.

A second, and more important, effect of the struggle between
BBN and BSD was simply the widespread adoption of the TCP/
IP protocols. An estimated 98 percent of computer-science depart-
ments in the United States and many such departments around the
world incorporated the TCP/IP protocols into their UNIX systems
and gained instant access to Arpanet.42 The fact that this occurred
when it did is important: a few years later, during the era of the
commercialization of UNIX, these protocols might very well not
have been widely implemented (or more likely implemented in in-
compatible, nonstandard forms) by manufacturers, whereas before
1983, university computer scientists saw every benefit in doing so
if it meant they could easily connect to the largest single computer
network on the planet. The large, already functioning, relatively
standard implementation of TCP/IP on UNIX (and the ability to
look at the source code) gave these protocols a tremendous advan-
tage in terms of their survival and success as the basis of a global
and singular network.

Conclusion

The UNIX operating system is not just a technical achievement; it is
the creation of a set of norms for sharing source code in an unusual
environment: quasi-commercial, quasi-academic, networked, and
planetwide. Sharing UNIX source code has taken three basic forms:
porting source code (transferring it from one machine to another);
teaching source code, or “porting” it to students in a pedagogical
setting where the use of an actual working operating system vastly
facilitates the teaching of theory and concepts; and forking source
code (modifying the existing source code to do something new or
different). This play of proliferation and differentiation is essential
to the remarkably stable identity of UNIX, but that identity exists
in multiple forms: technical (as a functioning, self-compatible op-
erating system), legal (as a license-circumscribed version subject to
intellectual property and commercial law), and pedagogical (as a
conceptual exemplar, the paradigm of an operating system). Source
code shared in this manner is essentially unlike any other kind of

142 sharing source code

source code in the world of computers, whether academic or com-
mercial. It raises troubling questions about standardization, about
control and audit, and about legitimacy that haunts not only UNIX
but the Internet and its various “open” protocols as well.

Sharing source code in Free Software looks the way it does today
because of UNIX. But UNIX looks the way it does not because of
the inventive genius of Thompson and Ritchie, or the marketing
and management brilliance of AT&T, but because sharing produces
its own kind of order: operating systems and social systems. The fact
that geeks are wont to speak of “the UNIX philosophy” means that
UNIX is not just an operating system but a way of organizing the
complex relations of life and work through technical means; a way
of charting and breaching the boundaries between the academic,
the aesthetic, and the commercial; a way of implementing ideas of
a moral and technical order. What’s more, as source code comes to
include more and more of the activities of everyday communica-
tion and creation—as it comes to replace writing and supplement
thinking—the genealogy of its portability and the history of its
forking will illuminate the kinds of order emerging in practices
and technologies far removed from operating systems—but tied in-
timately to the UNIX philosophy.

Intro	-	introduction	to	user	commands
Type Document

Date	Added 10/24/2016,	1:18:00	PM
Modified 10/24/2016,	1:18:30	PM

Notes:

INTRO(1)	Linux	User's	Manual
Online	documentation

man	intro

Or	PDF	from	man	page

man	-troff	-troff-device=ps	intro	|	ps2pdf	-	>	intro-manpage.pdf

Attachments

intro-manpage.pdf

INTRO(1) LinuxUser’s Manual INTRO(1)

NAME
intro − introduction to user commands

DESCRIPTION
Section 1 of the manual describes user commands and tools, for example, file manipulation tools, shells,
compilers, web browsers, file and image viewers and editors, and so on.

All commands yield a status value on termination. This value can be tested (e.g., in most shells the variable
$? contains the status of the last executed command) to see whether the command completed successfully.
A zero exit status is conventionally used to indicate success, and a nonzero status means that the command
was unsuccessful. (Detailsof the exit status can be found inwait(2).) A nonzero exit status can be in the
range 1 to 255, and some commands use different nonzero status values to indicate the reason why the com-
mand failed.

NOTES
Linux is a flavor of UNIX, and as a first approximation all user commands under UNIX work precisely the
same under Linux (and FreeBSD and lots of other UNIX-like systems).

Under Linux, there are GUIs (graphical user interfaces), where you can point and click and drag, and hope-
fully get work done without first reading lots of documentation.The traditional UNIX environment is a
CLI (command line interface), where you type commands to tell the computer what to do.That is faster
and more powerful, but requires finding out what the commands are.Below a bare minimum, to get
started.

Login
In order to start working, you probably first have to login, that is, give your username and password. See
also login(1). Theprogramlogin now starts ashell (command interpreter) for you. In case of a graphical
login, you get a screen with menus or icons and a mouse click will start a shell in a window. See also
xterm(1).

The shell
One types commands to theshell, the command interpreter. It is not built-in, but is just a program and you
can change your shell.Everybody has her own favorite one. The standard one is calledsh. See also
ash(1), bash(1), csh(1), zsh(1), chsh(1).

A session might go like

knuth login: aeb
Password:********
% date
Tue Aug 623:50:44 CEST 2002
% cal

August 2002
Su Mo Tu We Th Fr Sa

1 2 3
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

% ls
bin tel
% ls −l
total 2
drwxrwxr−x 2aeb 1024Aug 623:51 bin
−rw−rw−r−− 1aeb 37Aug 623:52 tel
% cat tel
maja 0501−1136285

Linux 2007-11-15 1

INTRO(1) LinuxUser’s Manual INTRO(1)

peter 0136−7399214
% cp tel tel2
% ls −l
total 3
drwxr−xr−x 2aeb 1024Aug 623:51 bin
−rw−r−−r−− 1aeb 37Aug 623:52 tel
−rw−r−−r−− 1aeb 37Aug 623:53 tel2
% mv tel tel1
% ls −l
total 3
drwxr−xr−x 2aeb 1024Aug 623:51 bin
−rw−r−−r−− 1aeb 37Aug 623:52 tel1
−rw−r−−r−− 1aeb 37Aug 623:53 tel2
% diff tel1 tel2
% rm tel1
% grep maja tel2
maja 0501−1136285
%

and here typing Control-D ended the session.The% here was the command prompt—it is the shell’s way
of indicating that it is ready for the next command. The prompt can be customized in lots of ways, and one
might include stuff l ike username, machine name, current directory, time, and so on.An assignment
PS1="What next, master? " would change the prompt as indicated.

We see that there are commandsdate(that gives date and time), andcal (that gives a calendar).

The commandls lists the contents of the current directory—it tells you what files you have. With a −l
option it gives a long listing, that includes the owner and size and date of the file, and the permissions peo-
ple have for reading and/or changing the file.For example, the file "tel" here is 37 bytes long, owned by
aeb and the owner can read and write it, others can only read it. Owner and permissions can be changed by
the commandschownandchmod.

The commandcat will show the contents of a file. (The name is from "concatenate and print": all files
given as parameters are concatenated and sent to "standard output", here the terminal screen.)

The commandcp (from "copy") will copy a file. Onthe other hand, the commandmv (from "move") only
renames it.

The commanddiff lists the differences between two files. Herethere was no output because there were no
differences.

The commandrm (from "remove") deletes the file, and be careful! it is gone. No wastepaper basket or any-
thing. Deletedmeans lost.

The commandgrep (from "g/re/p") finds occurrences of a string in one or more files. Here it finds Maja’s
telephone number.

Pathnames and the current directory
Files live in a large tree, the file hierarchy. Each has apathnamedescribing the path from the root of the
tree (which is called /) to the file.For example, such a full pathname might be /home/aeb/tel.Always using
full pathnames would be inconvenient, and the name of a file in the current directory may be abbreviated by
giving only the last component. That is why "/home/aeb/tel" can be abbreviated to "tel" when the current
directory is "/home/aeb".

The commandpwd prints the current directory.

The commandcd changes the current directory. Try "cd /" and "pwd" and "cd" and "pwd".

Directories
The commandmkdir makes a new directory.

The commandrmdir removes a directory if it is empty, and complains otherwise.

Linux 2007-11-15 2

INTRO(1) LinuxUser’s Manual INTRO(1)

The commandfind (with a rather baroque syntax) will find files with given name or other properties.For
example, "find . −name tel" would find the file "tel" starting in the present directory (which is called ".").
And "find / −name tel" would do the same, but starting at the root of the tree.Large searches on a multi-
GB disk will be time-consuming, and it may be better to uselocate(1).

Disks and filesystems
The commandmountwill attach the filesystem found on some disk (or floppy, or CDROM or so) to the big
filesystem hierarchy. And umountdetaches it again. Thecommanddf will tell you how much of your disk
is still free.

Processes
On a UNIX system many user and system processes run simultaneously. The one you are talking to runs in
the foreground, the others in thebackground. The commandps will show you which processes are active
and what numbers these processes have. The commandkill allows you to get rid of them.Without option
this is a friendly request: please go away. And "kill −9" followed by the number of the process is an imme-
diate kill. Foreground processes can often be killed by typing Control-C.

Getting information
There are thousands of commands, each with many options. Traditionally commands are documented on
man pages, (like this one), so that the command "man kill" will document the use of the command "kill"
(and "man man" document the command "man"). The programman sends the text through somepager ,
usuallyless. Hit the space bar to get the next page, hit q to quit.

In documentation it is customary to refer to man pages by giving the name and section number, as in
man(1). Man pages are terse, and allow you to find quickly some forgotten detail.For newcomers an
introductory text with more examples and explanations is useful.

A lot of GNU/FSF software is provided with info files. Type "info info" for an introduction on the use of
the program "info".

Special topics are often treated in HOWTOs. Lookin /usr/share/doc/howto/enand use a browser if you
find HTML files there.

SEE ALSO
standards(7)

COLOPHON
This page is part of release 3.74 of the Linuxman-pages project. Adescription of the project, information
about reporting bugs, and the latest version of this page, can be found at
http://www.kernel.org/doc/man−pages/.

Linux 2007-11-15 3

The	Linux	Command	Line
Type Book

Author William	Shotts
URL http://linuxcommand.org/

Date	Added 10/24/2016,	7:55:48	PM
Modified 10/24/2016,	7:57:03	PM

Notes:

Command	Line	Self	help
Shotts,	William.	The	Linux	Command	Line,	n.d.	http://linuxcommand.org/.

pdftk	The\	Linux\	Command\	Line\	-\	William\	Shotts.pdf	cat	26-77	output	The\	Linux\	Command\	Line-extract.pdf

Attachments

The	Linux	Command	Line	-	EXTRACT.pdf

1 – What Is The Shell?

1 – What Is The Shell?

When we speak of the command line, we are really referring to the shell. The shell is a
program that takes keyboard commands and passes them to the operating system to carry
out. Almost all Linux distributions supply a shell program from the GNU Project called
bash. The name “bash” is an acronym for “Bourne Again SHell”, a reference to the fact
bash is an enhanced replacement for sh, the original Unix shell program written by
Steve Bourne.

Terminal Emulators

When using a graphical user interface, we need another program called a terminal emula-
tor to interact with the shell. If we look through our desktop menus, we will probably find
one. KDE uses konsole and GNOME uses gnome-terminal, though it's likely
called simply “terminal” on our menu. There are a number of other terminal emulators
available for Linux, but they all basically do the same thing; give us access to the shell.
You will probably develop a preference for one or another based on the number of bells
and whistles it has.

Your First Keystrokes

So let's get started. Launch the terminal emulator! Once it comes up, we should see some-
thing like this:

[me@linuxbox ~]$

This is called a shell prompt and it will appear whenever the shell is ready to accept in-
put. While it may vary in appearance somewhat depending on the distribution, it will usu-
ally include your username@machinename, followed by the current working directory
(more about that in a little bit) and a dollar sign.

If the last character of the prompt is a pound sign (“#”) rather than a dollar sign, the ter-
minal session has superuser privileges. This means either we are logged in as the root
user or we selected a terminal emulator that provides superuser (administrative) privi-

2

Your First Keystrokes

leges.

Assuming that things are good so far, let's try some typing. Enter some gibberish at the
prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Since this command makes no sense, the shell will tell us so and give us another chance:

bash: kaekfjaeifj: command not found
[me@linuxbox ~]$

Command History

If we press the up-arrow key, we will see that the previous command “kaekfjaeifj” reap-
pears after the prompt. This is called command history. Most Linux distributions remem-
ber the last 500 commands by default. Press the down-arrow key and the previous com-
mand disappears.

Cursor Movement

Recall the previous command with the up-arrow key again. Now try the left and right-ar-
row keys. See how we can position the cursor anywhere on the command line? This
makes editing commands easy.

A Few Words About Mice And Focus

While the shell is all about the keyboard, you can also use a mouse with your ter-
minal emulator. There is a mechanism built into the X Window System (the un-
derlying engine that makes the GUI go) that supports a quick copy and paste tech-
nique. If you highlight some text by holding down the left mouse button and drag-
ging the mouse over it (or double clicking on a word), it is copied into a buffer
maintained by X. Pressing the middle mouse button will cause the text to be
pasted at the cursor location. Try it.
Note: Don't be tempted to use Ctrl-c and Ctrl-v to perform copy and paste
inside a terminal window. They don't work. These control codes have different
meanings to the shell and were assigned many years before Microsoft Windows.

3

1 – What Is The Shell?

Your graphical desktop environment (most likely KDE or GNOME), in an effort
to behave like Windows, probably has its focus policy set to “click to focus.” This
means for a window to get focus (become active) you need to click on it. This is
contrary to the traditional X behavior of “focus follows mouse” which means that
a window gets focus just by passing the mouse over it. The window will not come
to the foreground until you click on it but it will be able to receive input. Setting
the focus policy to “focus follows mouse” will make the copy and paste technique
even more useful. Give it a try if you can (some desktop environments such as
Ubuntu's Unity no longer support it). I think if you give it a chance you will pre-
fer it. You will find this setting in the configuration program for your window
manager.

Try Some Simple Commands

Now that we have learned to type, let's try a few simple commands. The first one is
date. This command displays the current time and date.

[me@linuxbox ~]$ date
Thu Oct 25 13:51:54 EDT 2007

A related command is cal which, by default, displays a calendar of the current month.

[me@linuxbox ~]$ cal
 October 2007
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

To see the current amount of free space on your disk drives, enter df:

[me@linuxbox ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5012392 9949716 34% /
/dev/sda5 59631908 26545424 30008432 47% /home
/dev/sda1 147764 17370 122765 13% /boot

4

Try Some Simple Commands

tmpfs 256856 0 256856 0% /dev/shm

Likewise, to display the amount of free memory, enter the free command.

[me@linuxbox ~]$ free
 total used free shared buffers cached
Mem: 513712 503976 9736 0 5312 122916
-/+ buffers/cache: 375748 137964
Swap: 1052248 104712 947536

Ending A Terminal Session

We can end a terminal session by either closing the terminal emulator window, or by en-
tering the exit command at the shell prompt:

[me@linuxbox ~]$ exit

The Console Behind The Curtain

Even if we have no terminal emulator running, several terminal sessions continue
to run behind the graphical desktop. Called virtual terminals or virtual consoles,
these sessions can be accessed on most Linux distributions by pressing Ctrl-
Alt-F1 through Ctrl-Alt-F6. When a session is accessed, it presents a login
prompt into which we can enter our username and password. To switch from one
virtual console to another, press Alt and F1-F6. To return to the graphical desk-
top, press Alt-F7.

Summing Up

As we begin our journey, we are introduced to the shell and see the command line for the
first time and learn how to start and end a terminal session. We also see how to issue
some simple commands and perform a little light command line editing. That wasn't so
scary was it?

5

1 – What Is The Shell?

Further Reading

● To learn more about Steve Bourne, father of the Bourne Shell, see this Wikipedia
article:
http://en.wikipedia.org/wiki/Steve_Bourne

● Here is an article about the concept of shells in computing:
http://en.wikipedia.org/wiki/Shell_(computing)

6

http://en.wikipedia.org/wiki/Shell_(computing)
http://en.wikipedia.org/wiki/Steve_Bourne

2 – Navigation

2 – Navigation

The first thing we need to learn (besides just typing) is how to navigate the file system on
our Linux system. In this chapter we will introduce the following commands:

● pwd - Print name of current working directory

● cd - Change directory

● ls - List directory contents

Understanding The File System Tree

Like Windows, a Unix-like operating system such as Linux organizes its files in what is
called a hierarchical directory structure. This means that they are organized in a tree-like
pattern of directories (sometimes called folders in other systems), which may contain
files and other directories. The first directory in the file system is called the root direc-
tory. The root directory contains files and subdirectories, which contain more files and
subdirectories and so on and so on.

Note that unlike Windows, which has a separate file system tree for each storage device,
Unix-like systems such as Linux always have a single file system tree, regardless of how
many drives or storage devices are attached to the computer. Storage devices are attached
(or more correctly, mounted) at various points on the tree according to the whims of the
system administrator, the person (or persons) responsible for the maintenance of the sys-
tem.

The Current Working Directory

Most of us are probably familiar with a graphical file manager which represents the file
system tree as in Figure 1. Notice that the tree is usually shown upended, that is, with the
root at the top and the various branches descending below.

However, the command line has no pictures, so to navigate the file system tree we need
to think of it in a different way.

7

2 – Navigation

Imagine that the file system is a maze shaped like an upside-down tree and we are able to

stand in the middle of it. At any given time, we are inside a single directory and we can
see the files contained in the directory and the pathway to the directory above us (called
the parent directory) and any subdirectories below us. The directory we are standing in is
called the current working directory. To display the current working directory, we use the
pwd (print working directory) command.

[me@linuxbox ~]$ pwd
/home/me

When we first log in to our system (or start a terminal emulator session) our current
working directory is set to our home directory. Each user account is given its own home
directory and it is the only place a regular user is allowed to write files.

Listing The Contents Of A Directory

To list the files and directories in the current working directory, we use the ls command.

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

8

Figure 1: File system tree as shown by a
graphical file manager

Listing The Contents Of A Directory

Actually, we can use the ls command to list the contents of any directory, not just the
current working directory, and there are many other fun things it can do as well. We'll
spend more time with ls in the next chapter.

Changing The Current Working Directory

To change your working directory (where we are standing in our tree-shaped maze) we
use the cd command. To do this, type cd followed by the pathname of the desired work-
ing directory. A pathname is the route we take along the branches of the tree to get to the
directory we want. Pathnames can be specified in one of two different ways; as absolute
pathnames or as relative pathnames. Let's deal with absolute pathnames first.

Absolute Pathnames

An absolute pathname begins with the root directory and follows the tree branch by
branch until the path to the desired directory or file is completed. For example, there is a
directory on your system in which most of your system's programs are installed. The
pathname of the directory is /usr/bin. This means from the root directory (represented
by the leading slash in the pathname) there is a directory called "usr" which contains a di-
rectory called "bin".

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin
[me@linuxbox bin]$ ls

...Listing of many, many files ...

Now we can see that we have changed the current working directory to /usr/bin and
that it is full of files. Notice how the shell prompt has changed? As a convenience, it is
usually set up to automatically display the name of the working directory.

Relative Pathnames

Where an absolute pathname starts from the root directory and leads to its destination, a
relative pathname starts from the working directory. To do this, it uses a couple of special
symbols to represent relative positions in the file system tree. These special symbols are
"." (dot) and ".." (dot dot).

The "." symbol refers to the working directory and the ".." symbol refers to the working
directory's parent directory. Here is how it works. Let's change the working directory to

9

2 – Navigation

/usr/bin again:

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Okay, now let's say that we wanted to change the working directory to the parent of
/usr/bin which is /usr. We could do that two different ways. Either with an absolute
pathname:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usr

Or, with a relative pathname:

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usr

Two different methods with identical results. Which one should we use? The one that
requires the least typing!

Likewise, we can change the working directory from /usr to /usr/bin in two
different ways. Either using an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Or, with a relative pathname:

[me@linuxbox usr]$ cd ./bin
[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important that I must point out here. In almost all cases, you can

10

Changing The Current Working Directory

omit the "./". It is implied. Typing:

[me@linuxbox usr]$ cd bin

does the same thing. In general, if you do not specify a pathname to something, the work-
ing directory will be assumed.

Some Helpful Shortcuts

In Table 2-1 we see some useful ways the current working directory can be quickly
changed.

Table 2-1: cd Shortcuts

Shortcut Result

cd Changes the working directory to your home directory.

cd - Changes the working directory to the previous working directory.

cd ~user_name Changes the working directory to the home directory of
user_name. For example, cd ~bob will change the directory to
the home directory of user “bob.”

Important Facts About Filenames

1. Filenames that begin with a period character are hidden. This only means that
ls will not list them unless you say ls -a. When your account was created,
several hidden files were placed in your home directory to configure things
for your account. Later on we will take a closer look at some of these files to
see how you can customize your environment. In addition, some applications
place their configuration and settings files in your home directory as hidden
files.

2. Filenames and commands in Linux, like Unix, are case sensitive. The file-
names “File1” and “file1” refer to different files.

3. Linux has no concept of a “file extension” like some other operating systems.
You may name files any way you like. The contents and/or purpose of a file is
determined by other means. Although Unix-like operating system don’t use

11

2 – Navigation

file extensions to determine the contents/purpose of files, some application
programs do.

4. Though Linux supports long filenames which may contain embedded spaces
and punctuation characters, limit the punctuation characters in the names of
files you create to period, dash, and underscore. Most importantly, do not em-
bed spaces in filenames. If you want to represent spaces between words in a
filename, use underscore characters. You will thank yourself later.

Summing Up

In this chapter we saw how the shell treats the directory structure of the system. We
learned about absolute and relative pathnames and the basic commands that are used to
move about that structure. In the next chapter we will use this knowledge to go on a tour
of a modern Linux system.

12

3 – Exploring The System

3 – Exploring The System

Now that we know how to move around the file system, it's time for a guided tour of our
Linux system. Before we start however, we’re going to learn some more commands that
will be useful along the way:

● ls – List directory contents

● file – Determine file type

● less – View file contents

More Fun With ls

The ls command is probably the most used command, and for good reason. With it, we
can see directory contents and determine a variety of important file and directory at-
tributes. As we have seen, we can simply enter ls to see a list of files and subdirectories
contained in the current working directory:

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

Besides the current working directory, we can specify the directory to list, like so:

me@linuxbox ~]$ ls /usr
bin games kerberos libexec sbin src
etc include lib local share tmp

Or even specify multiple directories. In this example we will list both the user's home di-
rectory (symbolized by the “~” character) and the /usr directory:

[me@linuxbox ~]$ ls ~ /usr
/home/me:

13

3 – Exploring The System

Desktop Documents Music Pictures Public Templates Videos

/usr:
bin games kerberos libexec sbin src
etc include lib local share tmp

We can also change the format of the output to reveal more detail:

[me@linuxbox ~]$ ls -l
total 56
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Desktop
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Documents
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Music
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Pictures
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Public
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Templates
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Videos

By adding “-l” to the command, we changed the output to the long format.

Options And Arguments

This brings us to a very important point about how most commands work. Commands are
often followed by one or more options that modify their behavior, and further, by one or
more arguments, the items upon which the command acts. So most commands look kind
of like this:

command -options arguments

Most commands use options consisting of a single character preceded by a dash, for ex-
ample, “-l”, but many commands, including those from the GNU Project, also support
long options, consisting of a word preceded by two dashes. Also, many commands allow
multiple short options to be strung together. In this example, the ls command is given
two options, the “l” option to produce long format output, and the “t” option to sort the
result by the file's modification time.

[me@linuxbox ~]$ ls -lt

14

More Fun With ls

We'll add the long option “--reverse” to reverse the order of the sort:

[me@linuxbox ~]$ ls -lt --reverse

Note that command options, like filenames in Linux, are case-sensitive.

The ls command has a large number of possible options. The most common are listed in
Table 3-1.

Table 3- 1: Common ls Options

Option Long Option Description

-a --all List all files, even those with names that begin
with a period, which are normally not listed
(i.e., hidden).

-A --almost-all Like the -a option above except it does not
list . (current directory) and .. (parent
directory).

-d --directory Ordinarily, if a directory is specified, ls will
list the contents of the directory, not the
directory itself. Use this option in conjunction
with the -l option to see details about the
directory rather than its contents.

-F --classify This option will append an indicator character
to the end of each listed name. For example, a
“/” if the name is a directory.

-h --human-readable In long format listings, display file sizes in
human readable format rather than in bytes.

-l Display results in long format.

-r --reverse Display the results in reverse order. Normally,
ls displays its results in ascending
alphabetical order.

-S Sort results by file size.

-t Sort by modification time.

15

3 – Exploring The System

A Longer Look At Long Format

As we saw before, the “-l” option causes ls to display its results in long format. This for-
mat contains a great deal of useful information. Here is the Examples directory from an
Ubuntu system:

-rw-r--r-- 1 root root 3576296 2007-04-03 11:05 Experience ubuntu.ogg
-rw-r--r-- 1 root root 1186219 2007-04-03 11:05 kubuntu-leaflet.png
-rw-r--r-- 1 root root 47584 2007-04-03 11:05 logo-Edubuntu.png
-rw-r--r-- 1 root root 44355 2007-04-03 11:05 logo-Kubuntu.png
-rw-r--r-- 1 root root 34391 2007-04-03 11:05 logo-Ubuntu.png
-rw-r--r-- 1 root root 32059 2007-04-03 11:05 oo-cd-cover.odf
-rw-r--r-- 1 root root 159744 2007-04-03 11:05 oo-derivatives.doc
-rw-r--r-- 1 root root 27837 2007-04-03 11:05 oo-maxwell.odt
-rw-r--r-- 1 root root 98816 2007-04-03 11:05 oo-trig.xls
-rw-r--r-- 1 root root 453764 2007-04-03 11:05 oo-welcome.odt
-rw-r--r-- 1 root root 358374 2007-04-03 11:05 ubuntu Sax.ogg

Let's look at the different fields from one of the files and examine their meanings:

Table 3-2: ls Long Listing Fields

Field Meaning

-rw-r--r-- Access rights to the file. The first character indicates the
type of file. Among the different types, a leading dash
means a regular file, while a “d” indicates a directory.
The next three characters are the access rights for the
file's owner, the next three are for members of the file's
group, and the final three are for everyone else. The full
meaning of this is discussed in Chapter 9 – Permissions.

1 File's number of hard links. See the discussion of links
later in this chapter.

root The username of the file's owner.

root The name of the group which owns the file.

32059 Size of the file in bytes.

2007-04-03 11:05 Date and time of the file's last modification.

oo-cd-cover.odf Name of the file.

16

Determining A File's Type With file

Determining A File's Type With file

As we explore the system it will be useful to know what files contain. To do this we will
use the file command to determine a file's type. As we discussed earlier, filenames in
Linux are not required to reflect a file's contents. While a filename like “picture.jpg”
would normally be expected to contain a JPEG compressed image, it is not required to in
Linux. We can invoke the file command this way:

file filename

When invoked, the file command will print a brief description of the file's contents.
For example:

[me@linuxbox ~]$ file picture.jpg
picture.jpg: JPEG image data, JFIF standard 1.01

There are many kinds of files. In fact, one of the common ideas in Unix-like operating
systems such as Linux is that “everything is a file.” As we proceed with our lessons, we
will see just how true that statement is.

While many of the files on your system are familiar, for example MP3 and JPEG, there
are many kinds that are a little less obvious and a few that are quite strange.

Viewing File Contents With less

The less command is a program to view text files. Throughout our Linux system, there
are many files that contain human-readable text. The less program provides a conve-
nient way to examine them.

What Is “Text”?

There are many ways to represent information on a computer. All methods in-
volve defining a relationship between the information and some numbers that will
be used to represent it. Computers, after all, only understand numbers and all data
is converted to numeric representation.
Some of these representation systems are very complex (such as compressed
video files), while others are rather simple. One of the earliest and simplest is
called ASCII text. ASCII (pronounced "As-Key") is short for American Standard

17

3 – Exploring The System

Code for Information Interchange. This is a simple encoding scheme that was first
used on Teletype machines to map keyboard characters to numbers.
Text is a simple one-to-one mapping of characters to numbers. It is very compact.
Fifty characters of text translates to fifty bytes of data. It is important to under-
stand that text only contains a simple mapping of characters to numbers. It is not
the same as a word processor document such as one created by Microsoft Word or
OpenOffice.org Writer. Those files, in contrast to simple ASCII text, contain
many non-text elements that are used to describe its structure and formatting.
Plain ASCII text files contain only the characters themselves and a few rudimen-
tary control codes like tabs, carriage returns and line feeds.
Throughout a Linux system, many files are stored in text format and there are
many Linux tools that work with text files. Even Windows recognizes the impor-
tance of this format. The well-known NOTEPAD.EXE program is an editor for
plain ASCII text files.

Why would we want to examine text files? Because many of the files that contain system
settings (called configuration files) are stored in this format, and being able to read them
gives us insight about how the system works. In addition, many of the actual programs
that the system uses (called scripts) are stored in this format. In later chapters, we will
learn how to edit text files in order to modify systems settings and write our own scripts,
but for now we will just look at their contents.

The less command is used like this:

less filename

Once started, the less program allows you to scroll forward and backward through a
text file. For example, to examine the file that defines all the system's user accounts, enter
the following command:

[me@linuxbox ~]$ less /etc/passwd

Once the less program starts, we can view the contents of the file. If the file is longer
than one page, we can scroll up and down. To exit less, press the “q” key.

The table below lists the most common keyboard commands used by less.

18

Viewing File Contents With less

Table 3-3: less Commands

Command Action

Page Up or b Scroll back one page

Page Down or space Scroll forward one page

Up Arrow Scroll up one line

Down Arrow Scroll down one line

G Move to the end of the text file

1G or g Move to the beginning of the text file

/characters Search forward to the next occurrence of characters

n Search for the next occurrence of the previous search

h Display help screen

q Quit less

Less Is More

The less program was designed as an improved replacement of an earlier Unix
program called more. The name “less” is a play on the phrase “less is more”—a   
motto of modernist architects and designers.
less falls into the class of programs called “pagers,” programs that allow the
easy viewing of long text documents in a page by page manner. Whereas the
more program could only page forward, the less program allows paging both
forward and backward and has many other features as well.

A Guided Tour

The file system layout on your Linux system is much like that found on other Unix-like
systems. The design is actually specified in a published standard called the Linux Filesys-
tem Hierarchy Standard. Not all Linux distributions conform to the standard exactly but
most come pretty close.

Next, we are going to wander around the file system ourselves to see what makes our
Linux system tick. This will give you a chance to practice your navigation skills. One of
the things we will discover is that many of the interesting files are in plain human-read-
able text. As we go about our tour, try the following:

19

3 – Exploring The System

1. cd into a given directory

2. List the directory contents with ls -l

3. If you see an interesting file, determine its contents with file

4. If it looks like it might be text, try viewing it with less

Remember the copy and paste trick! If you are using a mouse, you can double
click on a filename to copy it and middle click to paste it into commands.

As we wander around, don't be afraid to look at stuff. Regular users are largely prohibited
from messing things up. That's the system administrators job! If a command complains
about something, just move on to something else. Spend some time looking around. The
system is ours to explore. Remember, in Linux, there are no secrets!

Table 3-4 lists just a few of the directories we can explore. Feel free to try more!

Table 3-4: Directories Found On Linux Systems

Directory Comments

/ The root directory. Where everything begins.

/bin Contains binaries (programs) that must be present for the
system to boot and run.

/boot Contains the Linux kernel, initial RAM disk image (for
drivers needed at boot time), and the boot loader.

Interesting files:
● /boot/grub/grub.conf or menu.lst, which

are used to configure the boot loader.
● /boot/vmlinuz, the Linux kernel

/dev This is a special directory which contains device nodes.
“Everything is a file” also applies to devices. Here is where
the kernel maintains a list of all the devices it understands.

20

A Guided Tour

Directory Comments

/etc The /etc directory contains all of the system-wide
configuration files. It also contains a collection of shell
scripts which start each of the system services at boot time.
Everything in this directory should be readable text.

Interesting files: While everything in /etc is interesting,
here are some of my all-time favorites:

● /etc/crontab, a file that defines when
automated jobs will run.

● /etc/fstab, a table of storage devices and their
associated mount points.

● /etc/passwd, a list of the user accounts.

/home In normal configurations, each user is given a directory in
/home. Ordinary users can only write files in their home
directories. This limitation protects the system from errant
user activity.

/lib Contains shared library files used by the core system
programs. These are similar to DLLs in Windows.

/lost+found Each formatted partition or device using a Linux file system,
such as ext3, will have this directory. It is used in the case of
a partial recovery from a file system corruption event.
Unless something really bad has happened to your system,
this directory will remain empty.

/media On modern Linux systems the /media directory will
contain the mount points for removable media such as USB
drives, CD-ROMs, etc. that are mounted automatically at
insertion.

/mnt On older Linux systems, the /mnt directory contains mount
points for removable devices that have been mounted
manually.

/opt The /opt directory is used to install “optional” software.
This is mainly used to hold commercial software products
that may be installed on your system.

21

3 – Exploring The System

Directory Comments

/proc The /proc directory is special. It's not a real file system in
the sense of files stored on your hard drive. Rather, it is a
virtual file system maintained by the Linux kernel. The
“files” it contains are peepholes into the kernel itself. The
files are readable and will give you a picture of how the
kernel sees your computer.

/root This is the home directory for the root account.

/sbin This directory contains “system” binaries. These are
programs that perform vital system tasks that are generally
reserved for the superuser.

/tmp The /tmp directory is intended for storage of temporary,
transient files created by various programs. Some
configurations cause this directory to be emptied each time
the system is rebooted.

/usr The /usr directory tree is likely the largest one on a Linux
system. It contains all the programs and support files used
by regular users.

/usr/bin /usr/bin contains the executable programs installed by
your Linux distribution. It is not uncommon for this
directory to hold thousands of programs.

/usr/lib The shared libraries for the programs in /usr/bin.

/usr/local The /usr/local tree is where programs that are not
included with your distribution but are intended for system-
wide use are installed. Programs compiled from source code
are normally installed in /usr/local/bin. On a newly
installed Linux system, this tree exists, but it will be empty
until the system administrator puts something in it.

/usr/sbin Contains more system administration programs.

/usr/share /usr/share contains all the shared data used by
programs in /usr/bin. This includes things like default
configuration files, icons, screen backgrounds, sound files,
etc.

/usr/share/doc Most packages installed on the system will include some
kind of documentation. In /usr/share/doc, we will find
documentation files organized by package.

22

A Guided Tour

Directory Comments

/var With the exception of /tmp and /home, the directories we
have looked at so far remain relatively static, that is, their
contents don't change. The /var directory tree is where
data that is likely to change is stored. Various databases,
spool files, user mail, etc. are located here.

/var/log /var/log contains log files, records of various system
activity. These are very important and should be monitored
from time to time. The most useful one is
/var/log/messages. Note that for security reasons on
some systems, you must be the superuser to view log files .

Symbolic Links

As we look around, we are likely to see a directory listing with an entry like this:

lrwxrwxrwx 1 root root 11 2007-08-11 07:34 libc.so.6 -> libc-2.6.so

Notice how the first letter of the listing is “l” and the entry seems to have two filenames?
This is a special kind of a file called a symbolic link (also known as a soft link or sym-
link.) In most Unix-like systems it is possible to have a file referenced by multiple names.
While the value of this may not be obvious, it is really a useful feature.

Picture this scenario: A program requires the use of a shared resource of some kind con-
tained in a file named “foo,” but “foo” has frequent version changes. It would be good to
include the version number in the filename so the administrator or other interested party
could see what version of “foo” is installed. This presents a problem. If we change the
name of the shared resource, we have to track down every program that might use it and
change it to look for a new resource name every time a new version of the resource is in-
stalled. That doesn't sound like fun at all.

Here is where symbolic links save the day. Let's say we install version 2.6 of “foo,”
which has the filename “foo-2.6” and then create a symbolic link simply called “foo” that
points to “foo-2.6.” This means that when a program opens the file “foo”, it is actually
opening the file “foo-2.6”. Now everybody is happy. The programs that rely on “foo” can
find it and we can still see what actual version is installed. When it is time to upgrade to
“foo-2.7,” we just add the file to our system, delete the symbolic link “foo” and create a
new one that points to the new version. Not only does this solve the problem of the ver-
sion upgrade, but it also allows us to keep both versions on our machine. Imagine that
“foo-2.7” has a bug (damn those developers!) and we need to revert to the old version.
Again, we just delete the symbolic link pointing to the new version and create a new

23

3 – Exploring The System

symbolic link pointing to the old version.

The directory listing above (from the /lib directory of a Fedora system) shows a sym-
bolic link called “libc.so.6” that points to a shared library file called “libc-2.6.so.” This
means that programs looking for “libc.so.6” will actually get the file “libc-2.6.so.” We
will learn how to create symbolic links in the next chapter.

Hard Links

While we are on the subject of links, we need to mention that there is a second type of
link called a hard link. Hard links also allow files to have multiple names, but they do it
in a different way. We’ll talk more about the differences between symbolic and hard links
in the next chapter.

Summing Up

With our tour behind us, we have learned a lot about our system. We've seen various files
and directories and their contents. One thing you should take away from this is how open
the system is. In Linux there are many important files that are plain human-readable text.
Unlike many proprietary systems, Linux makes everything available for examination and
study.

Further Reading

● The full version of the Linux Filesystem Hierarchy Standard can be found here:
http://www.pathname.com/fhs/

● An article about the directory structure of Unix and Unix-like systems:
http://en.wikipedia.org/wiki/Unix_directory_structure

● A detailed description of the ASCII text format:
http://en.wikipedia.org/wiki/ASCII

24

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unix_directory_structure
http://www.pathname.com/fhs/

4 – Manipulating Files And Directories

4 – Manipulating Files And Directories

At this point, we are ready for some real work! This chapter will introduce the following
commands:

● cp – Copy files and directories

● mv – Move/rename files and directories

● mkdir – Create directories

● rm – Remove files and directories

● ln – Create hard and symbolic links

These five commands are among the most frequently used Linux commands. They are
used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are more easily done
with a graphical file manager. With a file manager, we can drag and drop a file from one
directory to another, cut and paste files, delete files, etc. So why use these old command
line programs?

The answer is power and flexibility. While it is easy to perform simple file manipulations
with a graphical file manager, complicated tasks can be easier with the command line
programs. For example, how could we copy all the HTML files from one directory to an-
other, but only copy files that do not exist in the destination directory or are newer than
the versions in the destination directory? Pretty hard with a file manager. Pretty easy with
the command line:

cp -u *.html destination

Wildcards

Before we begin using our commands, we need to talk about a shell feature that makes
these commands so powerful. Since the shell uses filenames so much, it provides special
characters to help you rapidly specify groups of filenames. These special characters are

25

4 – Manipulating Files And Directories

called wildcards. Using wildcards (which is also known as globbing) allow you to select
filenames based on patterns of characters. The table below lists the wildcards and what
they select:

Table 4-1: Wildcards

Wildcard Meaning

* Matches any characters

? Matches any single character

[characters] Matches any character that is a member of the set characters

[!characters] Matches any character that is not a member of the set
characters

[[:class:]] Matches any character that is a member of the specified
class

Table 4-2 lists the most commonly used character classes:

Table 4-2: Commonly Used Character Classes

Character Class Meaning

[:alnum:] Matches any alphanumeric character

[:alpha:] Matches any alphabetic character

[:digit:] Matches any numeral

[:lower:] Matches any lowercase letter

[:upper:] Matches any uppercase letter

Using wildcards makes it possible to construct very sophisticated selection criteria for
filenames. Here are some examples of patterns and what they match:

Table 4-3: Wildcard Examples

Pattern Matches

* All files

g* Any file beginning with “g”

b*.txt Any file beginning with “b” followed by
any characters and ending with “.txt”

26

Wildcards

Data??? Any file beginning with “Data” followed
by exactly three characters

[abc]* Any file beginning with either an “a”, a
“b”, or a “c”

BACKUP.[0-9][0-9][0-9] Any file beginning with “BACKUP.”
followed by exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[![:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or
the numerals “1”, “2”, or “3”

Wildcards can be used with any command that accepts filenames as arguments, but we’ll
talk more about that in Chapter 7.

Character Ranges

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] or the
[a-z] character range notations. These are traditional Unix notations and
worked in older versions of Linux as well. They can still work, but you have to be
very careful with them because they will not produce the expected results unless
properly configured. For now, you should avoid using them and use character
classes instead.

Wildcards Work In The GUI Too

Wildcards are especially valuable not only because they are used so frequently on
the command line, but are also supported by some graphical file managers.
● In Nautilus (the file manager for GNOME), you can select files using the

Edit/Select Pattern menu item. Just enter a file selection pattern with wild-
cards and the files in the currently viewed directory will be highlighted for se-
lection.

● In some versions of Dolphin and Konqueror (the file managers for KDE),
you can enter wildcards directly on the location bar. For example, if you want
to see all the files starting with a lowercase “u” in the /usr/bin directory, enter
“/usr/bin/u*” in the location bar and it will display the result.

27

4 – Manipulating Files And Directories

Many ideas originally found in the command line interface make their way into
the graphical interface, too. It is one of the many things that make the Linux desk-
top so powerful.

mkdir – Create Directories

The mkdir command is used to create directories. It works like this:

mkdir directory...

A note on notation: When three periods follow an argument in the description of a com-
mand (as above), it means that the argument can be repeated, thus:

mkdir dir1

would create a single directory named “dir1”, while

mkdir dir1 dir2 dir3

would create three directories named “dir1”, “dir2”, and “dir3”.

cp – Copy Files And Directories

The cp command copies files or directories. It can be used two different ways:

cp item1 item2

to copy the single file or directory “item1” to file or directory “item2” and:

cp item... directory

to copy multiple items (either files or directories) into a directory.

28

cp – Copy Files And Directories

Useful Options And Examples

Here are some of the commonly used options (the short option and the equivalent long
option) for cp:

Table 4-4: cp Options

Option Meaning

-a, --archive Copy the files and directories and all of their attributes,
including ownerships and permissions. Normally,
copies take on the default attributes of the user
performing the copy.

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. If this option is not specified, cp will
silently overwrite files.

-r, --recursive Recursively copy directories and their contents. This
option (or the -a option) is required when copying
directories.

-u, --update When copying files from one directory to another, only
copy files that either don't exist, or are newer than the
existing corresponding files, in the destination
directory.

-v, --verbose Display informative messages as the copy is
performed.

Table 4-5: cp Examples

Command Results

cp file1 file2 Copy file1 to file2. If file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it
is created.

cp -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

cp file1 file2 dir1 Copy file1 and file2 into directory dir1. dir1 must
already exist.

cp dir1/* dir2 Using a wildcard, all the files in dir1 are copied
into dir2. dir2 must already exist.

29

4 – Manipulating Files And Directories

cp -r dir1 dir2 Copy the contents of directory dir1 to directory
dir2. If directory dir2 does not exist, it is created
and, after the copy, will contain the same contents
as directory dir1.
If directory dir2 does exist, then directory dir1 (and
its contents) will be copied into dir2.

mv – Move And Rename Files

The mv command performs both file moving and file renaming, depending on how it is
used. In either case, the original filename no longer exists after the operation. mv is used
in much the same way as cp:

mv item1 item2

to move or rename file or directory “item1” to “item2” or:

mv item... directory

to move one or more items from one directory to another.

Useful Options And Examples

mv shares many of the same options as cp:

Table 4-6: mv Options

Option Meaning

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. If this option is not specified, mv will
silently overwrite files.

-u, --update When moving files from one directory to another, only
move files that either don't exist, or are newer than the
existing corresponding files in the destination
directory.

-v, --verbose Display informative messages as the move is

30

mv – Move And Rename Files

performed.

Table 4-7: mv Examples

Command Results

mv file1 file2 Move file1 to file2. If file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it
is created. In either case, file1 ceases to exist.

mv -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

mv file1 file2 dir1 Move file1 and file2 into directory dir1. dir1 must
already exist.

mv dir1 dir2 If directory dir2 does not exist, create directory
dir2 and move the contents of directory dir1 into
dir2 and delete directory dir1.
If directory dir2 does exist, move directory dir1
(and its contents) into directory dir2.

rm – Remove Files And Directories

The rm command is used to remove (delete) files and directories:

rm item...

where “item” is one or more files or directories.

Useful Options And Examples

Here are some of the common options for rm:

Table 4-8: rm Options

Option Meaning

-i, --interactive Before deleting an existing file, prompt the user for
confirmation. If this option is not specified, rm will
silently delete files.

31

4 – Manipulating Files And Directories

-r, --recursive Recursively delete directories. This means that if a
directory being deleted has subdirectories, delete them
too. To delete a directory, this option must be specified.

-f, --force Ignore nonexistent files and do not prompt. This
overrides the --interactive option.

-v, --verbose Display informative messages as the deletion is
performed.

Table 4-9: rm Examples

Command Results

rm file1 Delete file1 silently.

rm -i file1 Same as above, except that the user is prompted for
confirmation before the deletion is performed.

rm -r file1 dir1 Delete file1 and dir1 and its contents.

rm -rf file1 dir1 Same as above, except that if either file1 or dir1 do
not exist, rm will continue silently.

Be Careful With rm!

Unix-like operating systems such as Linux do not have an undelete command.
Once you delete something with rm, it's gone. Linux assumes you're smart and
you know what you're doing.
Be particularly careful with wildcards. Consider this classic example. Let's say
you want to delete just the HTML files in a directory. To do this, you type:
rm *.html
which is correct, but if you accidentally place a space between the “*” and the
“.html” like so:
rm * .html
the rm command will delete all the files in the directory and then complain that
there is no file called “.html”.
Here is a useful tip. Whenever you use wildcards with rm (besides carefully
checking your typing!), test the wildcard first with ls. This will let you see the

32

rm – Remove Files And Directories

files that will be deleted. Then press the up arrow key to recall the command and
replace the ls with rm.

ln – Create Links

The ln command is used to create either hard or symbolic links. It is used in one of two
ways:

ln file link

to create a hard link, and:

ln -s item link

to create a symbolic link where “item” is either a file or a directory.

Hard Links

Hard links are the original Unix way of creating links, compared to symbolic links, which
are more modern. By default, every file has a single hard link that gives the file its name.
When we create a hard link, we create an additional directory entry for a file. Hard links
have two important limitations:

1. A hard link cannot reference a file outside its own file system. This means a link
cannot reference a file that is not on the same disk partition as the link itself.

2. A hard link may not reference a directory.

A hard link is indistinguishable from the file itself. Unlike a symbolic link, when you list
a directory containing a hard link you will see no special indication of the link. When a
hard link is deleted, the link is removed but the contents of the file itself continue to exist
(that is, its space is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter them from time to
time, but modern practice prefers symbolic links, which we will cover next.

Symbolic Links

Symbolic links were created to overcome the limitations of hard links. Symbolic links
work by creating a special type of file that contains a text pointer to the referenced file or

33

4 – Manipulating Files And Directories

directory. In this regard, they operate in much the same way as a Windows shortcut
though of course, they predate the Windows feature by many years ;-)

A file pointed to by a symbolic link, and the symbolic link itself are largely indistinguish-
able from one another. For example, if you write something to the symbolic link, the ref-
erenced file is written to. However when you delete a symbolic link, only the link is
deleted, not the file itself. If the file is deleted before the symbolic link, the link will con-
tinue to exist, but will point to nothing. In this case, the link is said to be broken. In many
implementations, the ls command will display broken links in a distinguishing color,
such as red, to reveal their presence.

The concept of links can seem very confusing, but hang in there. We're going to try all
this stuff and it will, hopefully, become clear.

Let's Build A Playground

Since we are going to do some real file manipulation, let's build a safe place to “play”
with our file manipulation commands. First we need a directory to work in. We'll create
one in our home directory and call it “playground.”

Creating Directories

The mkdir command is used to create a directory. To create our playground directory we
will first make sure we are in our home directory and will then create the new directory:

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make our playground a little more interesting, let's create a couple of directories inside
it called “dir1” and “dir2”. To do this, we will change our current working directory to
playground and execute another mkdir:

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dir1 dir2

Notice that the mkdir command will accept multiple arguments allowing us to create
both directories with a single command.

Copying Files

Next, let's get some data into our playground. We'll do this by copying a file. Using the

34

Let's Build A Playground

cp command, we'll copy the passwd file from the /etc directory to the current work-
ing directory:

[me@linuxbox playground]$ cp /etc/passwd .

Notice how we used the shorthand for the current working directory, the single trailing
period. So now if we perform an ls, we will see our file:

[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2008-01-10 16:40 dir1
drwxrwxr-x 2 me me 4096 2008-01-10 16:40 dir2
-rw-r--r-- 1 me me 1650 2008-01-10 16:07 passwd

Now, just for fun, let's repeat the copy using the “-v” option (verbose) to see what it does:

[me@linuxbox playground]$ cp -v /etc/passwd .
`/etc/passwd' -> `./passwd'

The cp command performed the copy again, but this time displayed a concise message
indicating what operation it was performing. Notice that cp overwrote the first copy
without any warning. Again this is a case of cp assuming that you know what you’re are
doing. To get a warning, we'll include the “-i” (interactive) option:

[me@linuxbox playground]$ cp -i /etc/passwd .
cp: overwrite `./passwd'?

Responding to the prompt by entering a “y” will cause the file to be overwritten, any
other character (for example, “n”) will cause cp to leave the file alone.

Moving And Renaming Files

Now, the name “passwd” doesn't seem very playful and this is a playground, so let's
change it to something else:

[me@linuxbox playground]$ mv passwd fun

35

4 – Manipulating Files And Directories

Let's pass the fun around a little by moving our renamed file to each of the directories and
back again:

[me@linuxbox playground]$ mv fun dir1

to move it first to directory dir1, then:

[me@linuxbox playground]$ mv dir1/fun dir2

to move it from dir1 to dir2, then:

[me@linuxbox playground]$ mv dir2/fun .

to finally bring it back to the current working directory. Next, let's see the effect of mv on
directories. First we will move our data file into dir1 again:

[me@linuxbox playground]$ mv fun dir1

then move dir1 into dir2 and confirm it with ls:

[me@linuxbox playground]$ mv dir1 dir2
[me@linuxbox playground]$ ls -l dir2
total 4
drwxrwxr-x 2 me me 4096 2008-01-11 06:06 dir1
[me@linuxbox playground]$ ls -l dir2/dir1
total 4
-rw-r--r-- 1 me me 1650 2008-01-10 16:33 fun

Note that since dir2 already existed, mv moved dir1 into dir2. If dir2 had not ex-
isted, mv would have renamed dir1 to dir2. Lastly, let's put everything back:

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv dir1/fun .

36

Let's Build A Playground

Creating Hard Links

Now we'll try some links. First the hard links. We’ll create some links to our data file like
so:

[me@linuxbox playground]$ ln fun fun-hard
[me@linuxbox playground]$ ln fun dir1/fun-hard
[me@linuxbox playground]$ ln fun dir2/fun-hard

So now we have four instances of the file “fun”. Let's take a look our playground direc-
tory:

[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir1
drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir2
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard

One thing you notice is that the second field in the listing for fun and fun-hard both
contain a “4” which is the number of hard links that now exist for the file. You'll remem-
ber that a file will aways have at least one link because the file's name is created by a
link. So, how do we know that fun and fun-hard are, in fact, the same file? In this
case, ls is not very helpful. While we can see that fun and fun-hard are both the
same size (field 5), our listing provides no way to be sure. To solve this problem, we're
going to have to dig a little deeper.

When thinking about hard links, it is helpful to imagine that files are made up of two
parts: the data part containing the file's contents and the name part which holds the file's
name. When we create hard links, we are actually creating additional name parts that all
refer to the same data part. The system assigns a chain of disk blocks to what is called an
inode, which is then associated with the name part. Each hard link therefore refers to a
specific inode containing the file's contents.

The ls command has a way to reveal this information. It is invoked with the “-i” option:

[me@linuxbox playground]$ ls -li
total 16
12353539 drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir1
12353540 drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir2
12353538 -rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun

37

4 – Manipulating Files And Directories

12353538 -rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number and, as we can see, both
fun and fun-hard share the same inode number, which confirms they are the same
file.

Creating Symbolic Links

Symbolic links were created to overcome the two disadvantages of hard links: Hard links
cannot span physical devices and hard links cannot reference directories, only files. Sym-
bolic links are a special type of file that contains a text pointer to the target file or direc-
tory.

Creating symbolic links is similar to creating hard links:

[me@linuxbox playground]$ ln -s fun fun-sym
[me@linuxbox playground]$ ln -s ../fun dir1/fun-sym
[me@linuxbox playground]$ ln -s ../fun dir2/fun-sym

The first example is pretty straightforward, we simply add the “-s” option to create a
symbolic link rather than a hard link. But what about the next two? Remember, when we
create a symbolic link, we are creating a text description of where the target file is rela-
tive to the symbolic link. It's easier to see if we look at the ls output:

[me@linuxbox playground]$ ls -l dir1
total 4
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 6 2008-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dir1 shows that it is a symbolic link by the leading “l” in
the first field and that it points to “../fun”, which is correct. Relative to the location of
fun-sym, fun is in the directory above it. Notice too, that the length of the symbolic
link file is 6, the number of characters in the string “../fun” rather than the length of the
file to which it is pointing.

When creating symbolic links, you can either use absolute pathnames:

ln -s /home/me/playground/fun dir1/fun-sym

38

Let's Build A Playground

or relative pathnames, as we did in our earlier example. Using relative pathnames is more
desirable because it allows a directory containing symbolic links to be renamed and/or
moved without breaking the links.

In addition to regular files, symbolic links can also reference directories:

[me@linuxbox playground]$ ln -s dir1 dir1-sym
[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

Removing Files And Directories

As we covered earlier, the rm command is used to delete files and directories. We are go-
ing to use it to clean up our playground a little bit. First, let's delete one of our hard links:

[me@linuxbox playground]$ rm fun-hard
[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2
-rw-r--r-- 3 me me 1650 2008-01-10 16:33 fun
lrwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count shown for fun
is reduced from four to three, as indicated in the second field of the directory listing.
Next, we'll delete the file fun, and just for enjoyment, we'll include the “-i” option to
show what that does:

[me@linuxbox playground]$ rm -i fun
rm: remove regular file `fun'?

Enter “y” at the prompt and the file is deleted. But let's look at the output of ls now. No-
ticed what happened to fun-sym? Since it's a symbolic link pointing to a now-nonexis-
tent file, the link is broken:

39

4 – Manipulating Files And Directories

[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2
lrwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

Most Linux distributions configure ls to display broken links. On a Fedora box, broken
links are displayed in blinking red text! The presence of a broken link is not, in and of it-
self dangerous but it is rather messy. If we try to use a broken link we will see this:

[me@linuxbox playground]$ less fun-sym
fun-sym: No such file or directory

Let's clean up a little. We'll delete the symbolic links:

[me@linuxbox playground]$ rm fun-sym dir1-sym
[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2

One thing to remember about symbolic links is that most file operations are carried out
on the link's target, not the link itself. rm is an exception. When you delete a link, it is the
link that is deleted, not the target.

Finally, we will remove our playground. To do this, we will return to our home directory
and use rm with the recursive option (-r) to delete playground and all of its contents, in-
cluding its subdirectories:

[me@linuxbox playground]$ cd
[me@linuxbox ~]$ rm -r playground

Creating Symlinks With The GUI

The file managers in both GNOME and KDE provide an easy and automatic
method of creating symbolic links. With GNOME, holding the Ctrl+Shift keys

40

Let's Build A Playground

while dragging a file will create a link rather than copying (or moving) the file. In
KDE, a small menu appears whenever a file is dropped, offering a choice of copy-
ing, moving, or linking the file.

Summing Up

We've covered a lot of ground here and it will take a while to fully sink in. Perform the
playground exercise over and over until it makes sense. It is important to get a good un-
derstanding of basic file manipulation commands and wildcards. Feel free to expand on
the playground exercise by adding more files and directories, using wildcards to specify
files for various operations. The concept of links is a little confusing at first, but take the
time to learn how they work. They can be a real lifesaver.

Further Reading

● A discussion of symbolic links: http://en.wikipedia.org/wiki/Symbolic_link

41

http://en.wikipedia.org/wiki/Symbolic_link

5 – Working With Commands

5 – Working With Commands

Up to this point, we have seen a series of mysterious commands, each with its own mys-
terious options and arguments. In this chapter, we will attempt to remove some of that
mystery and even create some of our own commands. The commands introduced in this
chapter are:

● type – Indicate how a command name is interpreted

● which – Display which executable program will be executed

● help – Get help for shell builtins

● man – Display a command's manual page

● apropos – Display a list of appropriate commands

● info – Display a command's info entry

● whatis – Display a very brief description of a command

● alias – Create an alias for a command

What Exactly Are Commands?

A command can be one of four different things:

1. An executable program like all those files we saw in /usr/bin. Within this
category, programs can be compiled binaries such as programs written in C and
C++, or programs written in scripting languages such as the shell, perl, python,
ruby, etc.

2. A command built into the shell itself. bash supports a number of commands in-
ternally called shell builtins. The cd command, for example, is a shell builtin.

3. A shell function. These are miniature shell scripts incorporated into the environ-
ment. We will cover configuring the environment and writing shell functions in
later chapters, but for now, just be aware that they exist.

4. An alias. Commands that we can define ourselves, built from other commands.

42

Identifying Commands

Identifying Commands

It is often useful to know exactly which of the four kinds of commands is being used and
Linux provides a couple of ways to find out.

type – Display A Command's Type

The type command is a shell builtin that displays the kind of command the shell will
execute, given a particular command name. It works like this:

type command

where “command” is the name of the command you want to examine. Here are some ex-
amples:

[me@linuxbox ~]$ type type
type is a shell builtin
[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'
[me@linuxbox ~]$ type cp
cp is /bin/cp

Here we see the results for three different commands. Notice that the one for ls (taken
from a Fedora system) and how the ls command is actually an alias for the ls command
with the “-- color=tty” option added. Now we know why the output from ls is displayed
in color!

which – Display An Executable's Location

Sometimes there is more than one version of an executable program installed on a sys-
tem. While this is not very common on desktop systems, it's not unusual on large servers.
To determine the exact location of a given executable, the which command is used:

[me@linuxbox ~]$ which ls
/bin/ls

which only works for executable programs, not builtins nor aliases that are substitutes
for actual executable programs. When we try to use which on a shell builtin, for exam-
ple, cd, we either get no response or an error message:

43

5 – Working With Commands

[me@linuxbox ~]$ which cd
/usr/bin/which: no cd in (/opt/jre1.6.0_03/bin:/usr/lib/qt-
3.3/bin:/usr/kerberos/bin:/opt/jre1.6.0_03/bin:/usr/lib/ccache:/usr/l
ocal/bin:/usr/bin:/bin:/home/me/bin)

which is a fancy way of saying “command not found.”

Getting A Command's Documentation

With this knowledge of what a command is, we can now search for the documentation
available for each kind of command.

help – Get Help For Shell Builtins

bash has a built-in help facility available for each of the shell builtins. To use it, type
“help” followed by the name of the shell builtin. For example:

[me@linuxbox ~]$ help cd
cd: cd [-L|[-P [-e]]] [dir]
Change the shell working directory.

Change the current directory to DIR. The default DIR is the value of
the HOME shell variable.

The variable CDPATH defines the search path for the directory
containing DIR. Alternative directory names in CDPATH are separated
by a colon (:). A null directory name is the same as the current
directory. If DIR begins with a slash (/), then CDPATH is not used.

If the directory is not found, and the shell option `cdable_vars' is
set, the word is assumed to be a variable name. If that variable
has a value, its value is used for DIR.

Options:
-L force symbolic links to be followed
-P use the physical directory structure without following symbolic

links
-e if the -P option is supplied, and the current working directory

cannot be determined successfully, exit with a non-zero status

The default is to follow symbolic links, as if `-L' were specified.

Exit Status:
Returns 0 if the directory is changed, and if $PWD is set
successfully when -P is used; non-zero otherwise.

44

Getting A Command's Documentation

A note on notation: When square brackets appear in the description of a command's syn-
tax, they indicate optional items. A vertical bar character indicates mutually exclusive
items. In the case of the cd command above:

cd [-L|[-P[-e]]] [dir]

This notation says that the command cd may be followed optionally by either a “-L” or a
“-P” and further, if the “-P” option is specified the “-e” option may also be included fol-
lowed by the optional argument “dir”.

While the output of help for the cd commands is concise and accurate, it is by no
means tutorial and as we can see, it also seems to mention a lot of things we haven't
talked about yet! Don't worry. We'll get there.

--help – Display Usage Information

Many executable programs support a “--help” option that displays a description of the
command's supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

 -Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options
too.
 -m, --mode=MODE set file mode (as in chmod), not a=rwx – umask
 -p, --parents no error if existing, make parent directories as
 needed
 -v, --verbose print a message for each created directory
 --help display this help and exit
 --version output version information and exit

Report bugs to <bug-coreutils@gnu.org>.

Some programs don't support the “--help” option, but try it anyway. Often it results in an
error message that will reveal the same usage information.

man – Display A Program's Manual Page

Most executable programs intended for command line use provide a formal piece of doc-
umentation called a manual or man page. A special paging program called man is used to
view them. It is used like this:

45

5 – Working With Commands

man program

where “program” is the name of the command to view.

Man pages vary somewhat in format but generally contain a title, a synopsis of the com-
mand's syntax, a description of the command's purpose, and a listing and description of
each of the command's options. Man pages, however, do not usually include examples,
and are intended as a reference, not a tutorial. As an example, let's try viewing the man
page for the ls command:

[me@linuxbox ~]$ man ls

On most Linux systems, man uses less to display the manual page, so all of the familiar
less commands work while displaying the page.

The “manual” that man displays is broken into sections and not only covers user com-
mands but also system administration commands, programming interfaces, file formats
and more. The table below describes the layout of the manual:

Table 5-1: Man Page Organization

Section Contents

1 User commands

2 Programming interfaces kernel system calls

3 Programming interfaces to the C library

4 Special files such as device nodes and drivers

5 File formats

6 Games and amusements such as screen savers

7 Miscellaneous

8 System administration commands

Sometimes we need to look in a specific section of the manual to find what we are look-
ing for. This is particularly true if we are looking for a file format that is also the name of
a command. Without specifying a section number, we will always get the first instance of
a match, probably in section 1. To specify a section number, we use man like this:

46

Getting A Command's Documentation

man section search_term

For example:

[me@linuxbox ~]$ man 5 passwd

This will display the man page describing the file format of the /etc/passwd file.

apropos – Display Appropriate Commands

It is also possible to search the list of man pages for possible matches based on a search
term. It's very crude but sometimes helpful. Here is an example of a search for man pages
using the search term “floppy”:

[me@linuxbox ~]$ apropos floppy
create_floppy_devices (8) - udev callout to create all possible
 floppy device based on the CMOS type
fdformat (8) - Low-level formats a floppy disk
floppy (8) - format floppy disks
gfloppy (1) - a simple floppy formatter for the GNOME
mbadblocks (1) - tests a floppy disk, and marks the bad
 blocks in the FAT
mformat (1) - add an MSDOS filesystem to a low-level
 formatted floppy disk

The first field in each line of output is the name of the man page, the second field shows
the section. Note that the man command with the “-k” option performs the exact same
function as apropos.

whatis – Display A Very Brief Description Of A Command

The whatis program displays the name and a one line description of a man page match-
ing a specified keyword:

[me@linuxbox ~]$ whatis ls
ls (1) - list directory contents

47

5 – Working With Commands

The Most Brutal Man Page Of Them All

As we have seen, the manual pages supplied with Linux and other Unix-like sys-
tems are intended as reference documentation and not as tutorials. Many man
pages are hard to read, but I think that the grand prize for difficulty has got to go
to the man page for bash. As I was doing my research for this book, I gave it
careful review to ensure that I was covering most of its topics. When printed, it's
over 80 pages long and extremely dense, and its structure makes absolutely no
sense to a new user.
On the other hand, it is very accurate and concise, as well as being extremely
complete. So check it out if you dare and look forward to the day when you can
read it and it all makes sense.

info – Display A Program's Info Entry

The GNU Project provides an alternative to man pages for their programs, called “info.”
Info pages are displayed with a reader program named, appropriately enough, info. Info
pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: ls invocation, Next: dir invocation,
Up: Directory listing

10.1 `ls': List directory contents
==================================

The `ls' program lists information about files (of any type,
including directories). Options and file arguments can be intermixed
arbitrarily, as usual.

 For non-option command-line arguments that are directories, by
default `ls' lists the contents of directories, not recursively, and
omitting files with names beginning with `.'. For other non-option
arguments, by default `ls' lists just the filename. If no non-option
argument is specified, `ls' operates on the current directory, acting
as if it had been invoked with a single argument of `.'.

48

Getting A Command's Documentation

 By default, the output is sorted alphabetically, according to the
--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top----------

The info program reads info files, which are tree structured into individual nodes, each
containing a single topic. Info files contain hyperlinks that can move you from node to
node. A hyperlink can be identified by its leading asterisk, and is activated by placing the
cursor upon it and pressing the enter key.

To invoke info, type “info” followed optionally by the name of a program. Below is a
table of commands used to control the reader while displaying an info page:

Table 5-2: info Commands

Command Action

? Display command help

PgUp or Backspace Display previous page

PgDn or Space Display next page

n Next - Display the next node

p Previous - Display the previous node

u Up - Display the parent node of the currently displayed
node, usually a menu.

Enter Follow the hyperlink at the cursor location

q Quit

Most of the command line programs we have discussed so far are part of the GNU
Project's “coreutils” package, so typing:

[me@linuxbox ~]$ info coreutils

will display a menu page with hyperlinks to each program contained in the coreutils
package.

README And Other Program Documentation Files

Many software packages installed on your system have documentation files residing in
the /usr/share/doc directory. Most of these are stored in plain text format and can

49

5 – Working With Commands

be viewed with less. Some of the files are in HTML format and can be viewed with a
web browser. We may encounter some files ending with a “.gz” extension. This indicates
that they have been compressed with the gzip compression program. The gzip package
includes a special version of less called zless that will display the contents of gzip-
compressed text files.

Creating Your Own Commands With alias

Now for our very first experience with programming! We will create a command of our
own using the alias command. But before we start, we need to reveal a small com-
mand line trick. It's possible to put more than one command on a line by separating each
command with a semicolon character. It works like this:

command1; command2; command3...

Here's the example we will use:

[me@linuxbox ~]$ cd /usr; ls; cd -
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

As we can see, we have combined three commands on one line. First we change directory
to /usr then list the directory and finally return to the original directory (by using 'cd
-') so we end up where we started. Now let's turn this sequence into a new command us-
ing alias. The first thing we have to do is dream up a name for our new command.
Let's try “test”. Before we do that, it would be a good idea to find out if the name “test” is
already being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

 Oops! The name “test” is already taken. Let's try “foo”:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

50

Creating Your Own Commands With alias

Great! “foo” is not taken. So let's create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; ls; cd -'

Notice the structure of this command:

alias name='string'

After the command “alias” we give alias a name followed immediately (no whitespace al-
lowed) by an equals sign, followed immediately by a quoted string containing the mean-
ing to be assigned to the name. After we define our alias, it can be used anywhere the
shell would expect a command. Let's try it:

[me@linuxbox ~]$ foo
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to `cd /usr; ls ; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposefully avoided naming our alias with an existing command name, it is
not uncommon to do so. This is often done to apply a commonly desired option to each
invocation of a common command. For instance, we saw earlier how the ls command is
often aliased to add color support:

51

5 – Working With Commands

[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'

To see all the aliases defined in the environment, use the alias command without argu-
ments. Here are some of the aliases defined by default on a Fedora system. Try and figure
out what they all do:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'

There is one tiny problem with defining aliases on the command line. They vanish when
your shell session ends. In a later chapter, we will see how to add our own aliases to the
files that establish the environment each time we log on, but for now, enjoy the fact that
we have taken our first, albeit tiny, step into the world of shell programming!

Summing Up

Now that we have learned how to find the documentation for commands, go and look up
the documentation for all the commands we have encountered so far. Study what addi-
tional options are available and try them out!

Further Reading

There are many online sources of documentation for Linux and the command line. Here
are some of the best:

● The Bash Reference Manual is a reference guide to the bash shell. It’s still a ref-
erence work but contains examples and is easier to read than the bash man page.
http://www.gnu.org/software/bash/manual/bashref.html

● The Bash FAQ contains answers to frequently asked questions regarding bash.
This list is aimed at intermediate to advanced users, but contains a lot of good in-
formation.
http://mywiki.wooledge.org/BashFAQ

● The GNU Project provides extensive documentation for its programs, which form
the core of the Linux command line experience. You can see a complete list here:
http://www.gnu.org/manual/manual.html

● Wikipedia has an interesting article on man pages:
http://en.wikipedia.org/wiki/Man_page

52

http://en.wikipedia.org/wiki/Man_page
http://www.gnu.org/manual/manual.html
http://mywiki.wooledge.org/BashFAQ
http://www.gnu.org/software/bash/manual/bashref.html

6 – Redirection

6 – Redirection

In this lesson we are going to unleash what may be the coolest feature of the command
line. It's called I/O redirection. The “I/O” stands for input/output and with this facility
you can redirect the input and output of commands to and from files, as well as connect
multiple commands together into powerful command pipelines. To show off this facility,
we will introduce the following commands:

● cat - Concatenate files

● sort - Sort lines of text

● uniq - Report or omit repeated lines

● grep - Print lines matching a pattern

● wc - Print newline, word, and byte counts for each file

● head - Output the first part of a file

● tail - Output the last part of a file

● tee - Read from standard input and write to standard output and files

Standard Input, Output, And Error

Many of the programs that we have used so far produce output of some kind. This output
often consists of two types. First, we have the program's results; that is, the data the pro-
gram is designed to produce, and second, we have status and error messages that tell us
how the program is getting along. If we look at a command like ls, we can see that it
displays its results and its error messages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such as ls actually send
their results to a special file called standard output (often expressed as stdout) and their
status messages to another file called standard error (stderr). By default, both standard
output and standard error are linked to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard input (stdin) which
is, by default, attached to the keyboard.

53

In	the	Beginning	was	the	Command	Line
Type Document

Author Neal	Stephenson
URL http://www.cryptonomicon.com/beginning.html

Date	Added 10/24/2016,	7:33:26	PM
Modified 10/24/2016,	7:34:12	PM

Notes:

Rambling	on	the	command	line
Stephenson,	Neal.	â€œIn	the	Beginning	Was	the	Command	Line,â€​	n.d.

http://www.cryptonomicon.com/beginning.html.

Sections:	Linux,	Memento	Mori

pandoc	command.txt	-f	markdown	-t	latex	--standalone	|	pdflatex

Attachments

command.pdf

In the Beginning was the Command Line

by Neal Stephenson

LINUX

During the late 1980’s and early 1990’s I spent a lot of time programming
Macintoshes, and eventually decided for fork over several hundred dollars for an
Apple product called the Macintosh Programmer’s Workshop, or MPW. MPW
had competitors, but it was unquestionably the premier software development
system for the Mac. It was what Apple’s own engineers used to write Macintosh
code. Given that MacOS was far more technologically advanced, at the time,
than its competition, and that Linux did not even exist yet, and given that this
was the actual program used by Apple’s world-class team of creative engineers, I
had high expectations. It arrived on a stack of floppy disks about a foot high,
and so there was plenty of time for my excitement to build during the endless
installation process. The first time I launched MPW, I was probably expecting
some kind of touch-feely multimedia showcase. Instead it was austere, almost to
the point of being intimidating. It was a scrolling window into which you could
type simple, unformatted text. The system would then interpret these lines of
text as commands, and try to execute them.

It was, in other words, a glass teletype running a command line interface. It
came with all sorts of cryptic but powerful commands, which could be invoked by
typing their names, and which I learned to use only gradually. It was not until a
few years later, when I began messing around with Unix, that I understood that
the command line interface embodied in MPW was a re-creation of Unix.

In other words, the first thing that Apple’s hackers had done when they’d
got the MacOS up and running–probably even before they’d gotten it up and
running–was to re-create the Unix interface, so that they would be able to get
some useful work done. At the time, I simply couldn’t get my mind around this,
but: as far as Apple’s hackers were concerned, the Mac’s vaunted Graphical User
Interface was an impediment, something to be circumvented before the little
toaster even came out onto the market.

Even before my Powerbook crashed and obliterated my big file in July 1995,
there had been danger signs. An old college buddy of mine, who starts and
runs high-tech companies in Boston, had developed a commercial product using
Macintoshes as the front end. Basically the Macs were high-performance graphics
terminals, chosen for their sweet user interface, giving users access to a large
database of graphical information stored on a network of much more powerful,
but less user-friendly, computers. This fellow was the second person who turned
me on to Macintoshes, by the way, and through the mid-1980’s we had shared the
thrill of being high-tech cognoscenti, using superior Apple technology in a world
of DOS-using knuckleheads. Early versions of my friend’s system had worked

1

well, he told me, but when several machines joined the network, mysterious
crashes began to occur; sometimes the whole network would just freeze. It was
one of those bugs that could not be reproduced easily. Finally they figured out
that these network crashes were triggered whenever a user, scanning the menus
for a particular item, held down the mouse button for more than a couple of
seconds.

Fundamentally, the MacOS could only do one thing at a time. Drawing a menu
on the screen is one thing. So when a menu was pulled down, the Macintosh was
not capable of doing anything else until that indecisive user released the button.

This is not such a bad thing in a single-user, single-process machine (although
it’s a fairly bad thing), but it’s no good in a machine that is on a network,
because being on a network implies some kind of continual low-level interaction
with other machines. By failing to respond to the network, the Mac caused a
network-wide crash.

In order to work with other computers, and with networks, and with various
different types of hardware, an OS must be incomparably more complicated
and powerful than either MS-DOS or the original MacOS. The only way of
connecting to the Internet that’s worth taking seriously is PPP, the Point-to-Point
Protocol, which (never mind the details) makes your computer–temporarily–a full-
fledged member of the Global Internet, with its own unique address, and various
privileges, powers, and responsibilities appertaining thereunto. Technically it
means your machine is running the TCP/IP protocol, which, to make a long story
short, revolves around sending packets of data back and forth, in no particular
order, and at unpredictable times, according to a clever and elegant set of rules.
But sending a packet of data is one thing, and so an OS that can only do one
thing at a time cannot simultaneously be part of the Internet and do anything
else. When TCP/IP was invented, running it was an honor reserved for Serious
Computers–mainframes and high-powered minicomputers used in technical and
commercial settings–and so the protocol is engineered around the assumption
that every computer using it is a serious machine, capable of doing many things
at once. Not to put too fine a point on it, a Unix machine. Neither MacOS nor
MS-DOS was originally built with that in mind, and so when the Internet got
hot, radical changes had to be made.

When my Powerbook broke my heart, and when Word stopped recognizing my
old files, I jumped to Unix. The obvious alternative to MacOS would have been
Windows. I didn’t really have anything against Microsoft, or Windows. But it
was pretty obvious, now, that old PC operating systems were overreaching, and
showing the strain, and, perhaps, were best avoided until they had learned to
walk and chew gum at the same time.

The changeover took place on a particular day in the summer of 1995. I had
been San Francisco for a couple of weeks, using my PowerBook to work on a
document. The document was too big to fit onto a single floppy, and so I hadn’t
made a backup since leaving home. The PowerBook crashed and wiped out the

2

entire file.

It happened just as I was on my way out the door to visit a company called Electric
Communities, which in those days was in Los Altos. I took my PowerBook with
me. My friends at Electric Communities were Mac users who had all sorts of
utility software for unerasing files and recovering from disk crashes, and I was
certain I could get most of the file back.

As it turned out, two different Mac crash recovery utilities were unable to find
any trace that my file had ever existed. It was completely and systematically
wiped out. We went through that hard disk block by block and found disjointed
fragments of countless old, discarded, forgotten files, but none of what I wanted.
The metaphor shear was especially brutal that day. It was sort of like watching
the girl you’ve been in love with for ten years get killed in a car wreck, and then
attending her autopsy, and learning that underneath the clothes and makeup
she was just flesh and blood.

I must have been reeling around the offices of Electric Communities in some kind
of primal Jungian fugue, because at this moment three weirdly synchronistic
things happened.

(1) Randy Farmer, a co-founder of the company, came in for a quick visit
along with his family–he was recovering from back surgery at the time. He
had some hot gossip: “Windows 95 mastered today.” What this meant was
that Microsoft’s new operating system had, on this day, been placed on
a special compact disk known as a golden master, which would be used
to stamp out a jintillion copies in preparation for its thunderous release a
few weeks later. This news was received peevishly by the staff of Electric
Communities, including one whose office door was plastered with the usual
assortment of cartoons and novelties, e.g.

(2) a copy of a Dilbert cartoon in which Dilbert, the long-suffering corporate
software engineer, encounters a portly, bearded, hairy man of a certain
age–a bit like Santa Claus, but darker, with a certain edge about him.
Dilbert recognizes this man, based upon his appearance and affect, as a
Unix hacker, and reacts with a certain mixture of nervousness, awe, and
hostility. Dilbert jabs weakly at the disturbing interloper for a couple of
frames; the Unix hacker listens with a kind of infuriating, beatific calm,
then, in the last frame, reaches into his pocket. “Here’s a nickel, kid,” he
says, “go buy yourself a real computer.”

(3) the owner of the door, and the cartoon, was one Doug Barnes. Barnes
was known to harbor certain heretical opinions on the subject of operating
systems. Unlike most Bay Area techies who revered the Macintosh, con-
sidering it to be a true hacker’s machine, Barnes was fond of pointing out
that the Mac, with its hermetically sealed architecture, was actually hostile
to hackers, who are prone to tinkering and dogmatic about openness. By

3

contrast, the IBM-compatible line of machines, which can easily be taken
apart and plugged back together, was much more hackable.

So when I got home I began messing around with Linux, which is one of many,
many different concrete implementations of the abstract, Platonic ideal called
Unix. I was not looking forward to changing over to a new OS, because my
credit cards were still smoking from all the money I’d spent on Mac hardware
over the years. But Linux’s great virtue was, and is, that it would run on exactly
the same sort of hardware as the Microsoft OSes–which is to say, the cheapest
hardware in existence. As if to demonstrate why this was a great idea, I was,
within a week or two of returning home, able to get my hand on a then-decent
computer (a 33-MHz 486 box) for free, because I knew a guy who worked in an
office where they were simply being thrown away. Once I got it home, I yanked
the hood off, stuck my hands in, and began switching cards around. If something
didn’t work, I went to a used-computer outlet and pawed through a bin full of
components and bought a new card for a few bucks.

The availability of all this cheap but effective hardware was an unintended
consequence of decisions that had been made more than a decade earlier by
IBM and Microsoft. When Windows came out, and brought the GUI to a much
larger market, the hardware regime changed: the cost of color video cards and
high-resolution monitors began to drop, and is dropping still. This free-for-all
approach to hardware meant that Windows was unavoidably clunky compared
to MacOS. But the GUI brought computing to such a vast audience that volume
went way up and prices collapsed. Meanwhile Apple, which so badly wanted
a clean, integrated OS with video neatly integrated into processing hardware,
had fallen far behind in market share, at least partly because their beautiful
hardware cost so much.

But the price that we Mac owners had to pay for superior aesthetics and
engineering was not merely a financial one. There was a cultural price too,
stemming from the fact that we couldn’t open up the hood and mess around
with it. Doug Barnes was right. Apple, in spite of its reputation as the machine
of choice of scruffy, creative hacker types, had actually created a machine that
discouraged hacking, while Microsoft, viewed as a technological laggard and
copycat, had created a vast, disorderly parts bazaar–a primordial soup that
eventually self-assembled into Linux.

THE HOLE HAWG OF OPERATING SYSTEMS

Unix has always lurked provocatively in the background of the operating system
wars, like the Russian Army. Most people know it only by reputation, and its
reputation, as the Dilbert cartoon suggests, is mixed. But everyone seems to
agree that if it could only get its act together and stop surrendering vast tracts
of rich agricultural land and hundreds of thousands of prisoners of war to the
onrushing invaders, it could stomp them (and all other opposition) flat.

It is difficult to explain how Unix has earned this respect without going into

4

mind-smashing technical detail. Perhaps the gist of it can be explained by telling
a story about drills.

The Hole Hawg is a drill made by the Milwaukee Tool Company. If you look in
a typical hardware store you may find smaller Milwaukee drills but not the Hole
Hawg, which is too powerful and too expensive for homeowners. The Hole Hawg
does not have the pistol-like design of a cheap homeowner’s drill. It is a cube
of solid metal with a handle sticking out of one face and a chuck mounted in
another. The cube contains a disconcertingly potent electric motor. You can
hold the handle and operate the trigger with your index finger, but unless you
are exceptionally strong you cannot control the weight of the Hole Hawg with
one hand; it is a two-hander all the way. In order to fight off the counter-torque
of the Hole Hawg you use a separate handle (provided), which you screw into one
side of the iron cube or the other depending on whether you are using your left
or right hand to operate the trigger. This handle is not a sleek, ergonomically
designed item as it would be in a homeowner’s drill. It is simply a foot-long
chunk of regular galvanized pipe, threaded on one end, with a black rubber
handle on the other. If you lose it, you just go to the local plumbing supply
store and buy another chunk of pipe.

During the Eighties I did some construction work. One day, another worker
leaned a ladder against the outside of the building that we were putting up,
climbed up to the second-story level, and used the Hole Hawg to drill a hole
through the exterior wall. At some point, the drill bit caught in the wall. The
Hole Hawg, following its one and only imperative, kept going. It spun the
worker’s body around like a rag doll, causing him to knock his own ladder down.
Fortunately he kept his grip on the Hole Hawg, which remained lodged in the
wall, and he simply dangled from it and shouted for help until someone came
along and reinstated the ladder.

I myself used a Hole Hawg to drill many holes through studs, which it did as
a blender chops cabbage. I also used it to cut a few six-inch-diameter holes
through an old lath-and-plaster ceiling. I chucked in a new hole saw, went up
to the second story, reached down between the newly installed floor joists, and
began to cut through the first-floor ceiling below. Where my homeowner’s drill
had labored and whined to spin the huge bit around, and had stalled at the
slightest obstruction, the Hole Hawg rotated with the stupid consistency of a
spinning planet. When the hole saw seized up, the Hole Hawg spun itself and me
around, and crushed one of my hands between the steel pipe handle and a joist,
producing a few lacerations, each surrounded by a wide corona of deeply bruised
flesh. It also bent the hole saw itself, though not so badly that I couldn’t use
it. After a few such run-ins, when I got ready to use the Hole Hawg my heart
actually began to pound with atavistic terror.

But I never blamed the Hole Hawg; I blamed myself. The Hole Hawg is dangerous
because it does exactly what you tell it to. It is not bound by the physical
limitations that are inherent in a cheap drill, and neither is it limited by safety
interlocks that might be built into a homeowner’s product by a liability-conscious

5

manufacturer. The danger lies not in the machine itself but in the user’s failure
to envision the full consequences of the instructions he gives to it.

A smaller tool is dangerous too, but for a completely different reason: it tries to
do what you tell it to, and fails in some way that is unpredictable and almost
always undesirable. But the Hole Hawg is like the genie of the ancient fairy
tales, who carries out his master’s instructions literally and precisely and with
unlimited power, often with disastrous, unforeseen consequences.

Pre-Hole Hawg, I used to examine the drill selection in hardware stores with what
I thought was a judicious eye, scorning the smaller low-end models and hefting
the big expensive ones appreciatively, wishing I could afford one of them babies.
Now I view them all with such contempt that I do not even consider them to be
real drills–merely scaled-up toys designed to exploit the self-delusional tendencies
of soft-handed homeowners who want to believe that they have purchased an
actual tool. Their plastic casings, carefully designed and focus-group-tested to
convey a feeling of solidity and power, seem disgustingly flimsy and cheap to me,
and I am ashamed that I was ever bamboozled into buying such knicknacks.

It is not hard to imagine what the world would look like to someone who had
been raised by contractors and who had never used any drill other than a Hole
Hawg. Such a person, presented with the best and most expensive hardware-store
drill, would not even recognize it as such. He might instead misidentify it as a
child’s toy, or some kind of motorized screwdriver. If a salesperson or a deluded
homeowner referred to it as a drill, he would laugh and tell them that they were
mistaken–they simply had their terminology wrong. His interlocutor would go
away irritated, and probably feeling rather defensive about his basement full of
cheap, dangerous, flashy, colorful tools.

Unix is the Hole Hawg of operating systems, and Unix hackers, like Doug Barnes
and the guy in the Dilbert cartoon and many of the other people who populate
Silicon Valley, are like contractor’s sons who grew up using only Hole Hawgs.
They might use Apple/Microsoft OSes to write letters, play video games, or
balance their checkbooks, but they cannot really bring themselves to take these
operating systems seriously.

THE ORAL TRADITION

Unix is hard to learn. The process of learning it is one of multiple small
epiphanies. Typically you are just on the verge of inventing some necessary tool
or utility when you realize that someone else has already invented it, and built
it in, and this explains some odd file or directory or command that you have
noticed but never really understood before.

For example there is a command (a small program, part of the OS) called
whoami, which enables you to ask the computer who it thinks you are. On a
Unix machine, you are always logged in under some name–possibly even your
own! What files you may work with, and what software you may use, depends
on your identity. When I started out using Linux, I was on a non-networked

6

machine in my basement, with only one user account, and so when I became
aware of the whoami command it struck me as ludicrous. But once you are
logged in as one person, you can temporarily switch over to a pseudonym in order
to access different files. If your machine is on the Internet, you can log onto other
computers, provided you have a user name and a password. At that point the
distant machine becomes no different in practice from the one right in front of
you. These changes in identity and location can easily become nested inside each
other, many layers deep, even if you aren’t doing anything nefarious. Once you
have forgotten who and where you are, the whoami command is indispensible. I
use it all the time.

The file systems of Unix machines all have the same general structure. On your
flimsy operating systems, you can create directories (folders) and give them
names like Frodo or My Stuff and put them pretty much anywhere you like.
But under Unix the highest level–the root–of the filesystem is always designated
with the single character “/” and it always contains the same set of top-level
directories:

/usr /etc /var /bin /proc /boot /home /root /sbin /dev /lib /tmp

and each of these directories typically has its own distinct structure of subdirec-
tories. Note the obsessive use of abbreviations and avoidance of capital letters;
this is a system invented by people to whom repetitive stress disorder is what
black lung is to miners. Long names get worn down to three-letter nubbins, like
stones smoothed by a river.

This is not the place to try to explain why each of the above directories exists, and
what is contained in it. At first it all seems obscure; worse, it seems deliberately
obscure. When I started using Linux I was accustomed to being able to create
directories wherever I wanted and to give them whatever names struck my fancy.
Under Unix you are free to do that, of course (you are free to do anything)
but as you gain experience with the system you come to understand that the
directories listed above were created for the best of reasons and that your life
will be much easier if you follow along (within /home, by the way, you have
pretty much unlimited freedom).

After this kind of thing has happened several hundred or thousand times, the
hacker understands why Unix is the way it is, and agrees that it wouldn’t
be the same any other way. It is this sort of acculturation that gives Unix
hackers their confidence in the system, and the attitude of calm, unshakable,
annoying superiority captured in the Dilbert cartoon. Windows 95 and MacOS
are products, contrived by engineers in the service of specific companies. Unix,
by contrast, is not so much a product as it is a painstakingly compiled oral
history of the hacker subculture. It is our Gilgamesh epic.

What made old epics like Gilgamesh so powerful and so long-lived was that they
were living bodies of narrative that many people knew by heart, and told over
and over again–making their own personal embellishments whenever it struck
their fancy. The bad embellishments were shouted down, the good ones picked

7

up by others, polished, improved, and, over time, incorporated into the story.
Likewise, Unix is known, loved, and understood by so many hackers that it can
be re-created from scratch whenever someone needs it. This is very difficult to
understand for people who are accustomed to thinking of OSes as things that
absolutely have to be bought.

Many hackers have launched more or less successful re-implementations of the
Unix ideal. Each one brings in new embellishments. Some of them die out
quickly, some are merged with similar, parallel innovations created by different
hackers attacking the same problem, others still are embraced, and adopted into
the epic. Thus Unix has slowly accreted around a simple kernel and acquired
a kind of complexity and asymmetry about it that is organic, like the roots of
a tree, or the branchings of a coronary artery. Understanding it is more like
anatomy than physics.

For at least a year, prior to my adoption of Linux, I had been hearing about
it. Credible, well-informed people kept telling me that a bunch of hackers had
got together an implentation of Unix that could be downloaded, free of charge,
from the Internet. For a long time I could not bring myself to take the notion
seriously. It was like hearing rumors that a group of model rocket enthusiasts
had created a completely functional Saturn V by exchanging blueprints on the
Net and mailing valves and flanges to each other.

But it’s true. Credit for Linux generally goes to its human namesake, one Linus
Torvalds, a Finn who got the whole thing rolling in 1991 when he used some
of the GNU tools to write the beginnings of a Unix kernel that could run on
PC-compatible hardware. And indeed Torvalds deserves all the credit he has ever
gotten, and a whole lot more. But he could not have made it happen by himself,
any more than Richard Stallman could have. To write code at all, Torvalds had
to have cheap but powerful development tools, and these he got from Stallman’s
GNU project.

And he had to have cheap hardware on which to write that code. Cheap hardware
is a much harder thing to arrange than cheap software; a single person (Stallman)
can write software and put it up on the Net for free, but in order to make
hardware it’s necessary to have a whole industrial infrastructure, which is not
cheap by any stretch of the imagination. Really the only way to make hardware
cheap is to punch out an incredible number of copies of it, so that the unit cost
eventually drops. For reasons already explained, Apple had no desire to see
the cost of hardware drop. The only reason Torvalds had cheap hardware was
Microsoft.

Microsoft refused to go into the hardware business, insisted on making its software
run on hardware that anyone could build, and thereby created the market
conditions that allowed hardware prices to plummet. In trying to understand
the Linux phenomenon, then, we have to look not to a single innovator but to a
sort of bizarre Trinity: Linus Torvalds, Richard Stallman, and Bill Gates. Take
away any of these three and Linux would not exist.

8

OS SHOCK

Young Americans who leave their great big homogeneous country and visit some
other part of the world typically go through several stages of culture shock:
first, dumb wide-eyed astonishment. Then a tentative engagement with the new
country’s manners, cuisine, public transit systems and toilets, leading to a brief
period of fatuous confidence that they are instant experts on the new country.
As the visit wears on, homesickness begins to set in, and the traveler begins to
appreciate, for the first time, how much he or she took for granted at home. At
the same time it begins to seem obvious that many of one’s own cultures and
traditions are essentially arbitrary, and could have been different; driving on the
right side of the road, for example. When the traveler returns home and takes
stock of the experience, he or she may have learned a good deal more about
America than about the country they went to visit.

For the same reasons, Linux is worth trying. It is a strange country indeed, but
you don’t have to live there; a brief sojourn suffices to give some flavor of the
place and–more importantly–to lay bare everything that is taken for granted,
and all that could have been done differently, under Windows or MacOS.

You can’t try it unless you install it. With any other OS, installing it would be
a straightforward transaction: in exchange for money, some company would give
you a CD-ROM, and you would be on your way. But a lot is subsumed in that
kind of transaction, and has to be gone through and picked apart.

We like plain dealings and straightforward transactions in America. If you go to
Egypt and, say, take a taxi somewhere, you become a part of the taxi driver’s
life; he refuses to take your money because it would demean your friendship, he
follows you around town, and weeps hot tears when you get in some other guy’s
taxi. You end up meeting his kids at some point, and have to devote all sort of
ingenuity to finding some way to compensate him without insulting his honor.
It is exhausting. Sometimes you just want a simple Manhattan-style taxi ride.

But in order to have an American-style setup, where you can just go out and
hail a taxi and be on your way, there must exist a whole hidden apparatus of
medallions, inspectors, commissions, and so forth–which is fine as long as taxis
are cheap and you can always get one. When the system fails to work in some
way, it is mysterious and infuriating and turns otherwise reasonable people into
conspiracy theorists. But when the Egyptian system breaks down, it breaks
down transparently. You can’t get a taxi, but your driver’s nephew will show
up, on foot, to explain the problem and apologize.

Microsoft and Apple do things the Manhattan way, with vast complexity hidden
behind a wall of interface. Linux does things the Egypt way, with vast complexity
strewn about all over the landscape. If you’ve just flown in from Manhattan,
your first impulse will be to throw up your hands and say “For crying out loud!
Will you people get a grip on yourselves!?” But this does not make friends in
Linux-land any better than it would in Egypt.

9

You can suck Linux right out of the air, as it were, by downloading the right
files and putting them in the right places, but there probably are not more than
a few hundred people in the world who could create a functioning Linux system
in that way. What you really need is a distribution of Linux, which means a
prepackaged set of files. But distributions are a separate thing from Linux per
se.

Linux per se is not a specific set of ones and zeroes, but a self-organizing Net
subculture. The end result of its collective lucubrations is a vast body of source
code, almost all written in C (the dominant computer programming language).
“Source code” just means a computer program as typed in and edited by some
hacker. If it’s in C, the file name will probably have .c or .cpp on the end of it,
depending on which dialect was used; if it’s in some other language it will have
some other suffix. Frequently these sorts of files can be found in a directory with
the name /src which is the hacker’s Hebraic abbreviation of “source.”

Source files are useless to your computer, and of little interest to most users,
but they are of gigantic cultural and political significance, because Microsoft
and Apple keep them secret while Linux makes them public. They are the
family jewels. They are the sort of thing that in Hollywood thrillers is used as a
McGuffin: the plutonium bomb core, the top-secret blueprints, the suitcase of
bearer bonds, the reel of microfilm. If the source files for Windows or MacOS
were made public on the Net, then those OSes would become free, like Linux–only
not as good, because no one would be around to fix bugs and answer questions.
Linux is “open source” software meaning, simply, that anyone can get copies of
its source code files.

Your computer doesn’t want source code any more than you do; it wants object
code. Object code files typically have the suffix .o and are unreadable all
but a few, highly strange humans, because they consist of ones and zeroes.
Accordingly, this sort of file commonly shows up in a directory with the name
/bin, for “binary.”

Source files are simply ASCII text files. ASCII denotes a particular way of
encoding letters into bit patterns. In an ASCII file, each character has eight bits
all to itself. This creates a potential “alphabet” of 256 distinct characters, in that
eight binary digits can form that many unique patterns. In practice, of course,
we tend to limit ourselves to the familiar letters and digits. The bit-patterns
used to represent those letters and digits are the same ones that were physically
punched into the paper tape by my high school teletype, which in turn were
the same one used by the telegraph industry for decades previously. ASCII text
files, in other words, are telegrams, and as such they have no typographical frills.
But for the same reason they are eternal, because the code never changes, and
universal, because every text editing and word processing software ever written
knows about this code.

Therefore just about any software can be used to create, edit, and read source
code files. Object code files, then, are created from these source files by a piece

10

of software called a compiler, and forged into a working application by another
piece of software called a linker.

The triad of editor, compiler, and linker, taken together, form the core of a
software development system. Now, it is possible to spend a lot of money on
shrink-wrapped development systems with lovely graphical user interfaces and
various ergonomic enhancements. In some cases it might even be a good and
reasonable way to spend money. But on this side of the road, as it were, the
very best software is usually the free stuff. Editor, compiler and linker are to
hackers what ponies, stirrups, and archery sets were to the Mongols. Hackers
live in the saddle, and hack on their own tools even while they are using them
to create new applications. It is quite inconceivable that superior hacking tools
could have been created from a blank sheet of paper by product engineers. Even
if they are the brightest engineers in the world they are simply outnumbered.

In the GNU/Linux world there are two major text editing programs: the
minimalist vi (known in some implementations as elvis) and the maximalist
emacs. I use emacs, which might be thought of as a thermonuclear word processor.
It was created by Richard Stallman; enough said. It is written in Lisp, which is
the only computer language that is beautiful. It is colossal, and yet it only edits
straight ASCII text files, which is to say, no fonts, no boldface, no underlining.
In other words, the engineer-hours that, in the case of Microsoft Word, were
devoted to features like mail merge, and the ability to embed feature-length
motion pictures in corporate memoranda, were, in the case of emacs, focused
with maniacal intensity on the deceptively simple-seeming problem of editing
text. If you are a professional writer–i.e., if someone else is getting paid to worry
about how your words are formatted and printed–emacs outshines all other
editing software in approximately the same way that the noonday sun does the
stars. It is not just bigger and brighter; it simply makes everything else vanish.
For page layout and printing you can use TeX: a vast corpus of typesetting lore
written in C and also available on the Net for free.

I could say a lot about emacs and TeX, but right now I am trying to tell a story
about how to actually install Linux on your machine. The hard-core survivalist
approach would be to download an editor like emacs, and the GNU Tools–the
compiler and linker–which are polished and excellent to the same degree as
emacs. Equipped with these, one would be able to start downloading ASCII
source code files (/src) and compiling them into binary object code files (/bin)
that would run on the machine. But in order to even arrive at this point–to get
emacs running, for example–you have to have Linux actually up and running on
your machine. And even a minimal Linux operating system requires thousands
of binary files all acting in concert, and arranged and linked together just so.

Several entities have therefore taken it upon themselves to create “distributions”
of Linux. If I may extend the Egypt analogy slightly, these entities are a bit
like tour guides who meet you at the airport, who speak your language, and
who help guide you through the initial culture shock. If you are an Egyptian, of
course, you see it the other way; tour guides exist to keep brutish outlanders

11

from traipsing through your mosques and asking you the same questions over
and over and over again.

Some of these tour guides are commercial organizations, such as Red Hat Software,
which makes a Linux distribution called Red Hat that has a relatively commercial
sheen to it. In most cases you put a Red Hat CD-ROM into your PC and reboot
and it handles the rest. Just as a tour guide in Egypt will expect some sort of
compensation for his services, commercial distributions need to be paid for. In
most cases they cost almost nothing and are well worth it.

I use a distribution called Debian (the word is a contraction of “Deborah” and
“Ian”) which is non-commercial. It is organized (or perhaps I should say “it has
organized itself”) along the same lines as Linux in general, which is to say that it
consists of volunteers who collaborate over the Net, each responsible for looking
after a different chunk of the system. These people have broken Linux down
into a number of packages, which are compressed files that can be downloaded
to an already functioning Debian Linux system, then opened up and unpacked
using a free installer application. Of course, as such, Debian has no commercial
arm–no distribution mechanism. You can download all Debian packages over the
Net, but most people will want to have them on a CD-ROM. Several different
companies have taken it upon themselves to decoct all of the current Debian
packages onto CD-ROMs and then sell them. I buy mine from Linux Systems
Labs. The cost for a three-disc set, containing Debian in its entirety, is less
than three dollars. But (and this is an important distinction) not a single penny
of that three dollars is going to any of the coders who created Linux, nor to
the Debian packagers. It goes to Linux Systems Labs and it pays, not for the
software, or the packages, but for the cost of stamping out the CD-ROMs.

Every Linux distribution embodies some more or less clever hack for circumvent-
ing the normal boot process and causing your computer, when it is turned on,
to organize itself, not as a PC running Windows, but as a “host” running Unix.
This is slightly alarming the first time you see it, but completely harmless. When
a PC boots up, it goes through a little self-test routine, taking an inventory of
available disks and memory, and then begins looking around for a disk to boot
up from. In any normal Windows computer that disk will be a hard drive. But if
you have your system configured right, it will look first for a floppy or CD-ROM
disk, and boot from that if one is available.

Linux exploits this chink in the defenses. Your computer notices a bootable disk
in the floppy or CD-ROM drive, loads in some object code from that disk, and
blindly begins to execute it. But this is not Microsoft or Apple code, this is
Linux code, and so at this point your computer begins to behave very differently
from what you are accustomed to. Cryptic messages began to scroll up the
screen. If you had booted a commercial OS, you would, at this point, be seeing a
“Welcome to MacOS” cartoon, or a screen filled with clouds in a blue sky, and a
Windows logo. But under Linux you get a long telegram printed in stark white
letters on a black screen. There is no “welcome!” message. Most of the telegram
has the semi-inscrutable menace of graffiti tags.

12

Dec 14 15:04:15 theRev syslogd 1.3-3#17: restart. Dec 14 15:04:15 theRev
kernel: klogd 1.3-3, log source = /proc/kmsg started. Dec 14 15:04:15 theRev
kernel: Loaded 3535 symbols from /System.map. Dec 14 15:04:15 theRev
kernel: Symbols match kernel version 2.0.30. Dec 14 15:04:15 theRev kernel: No
module symbols loaded. Dec 14 15:04:15 theRev kernel: Intel MultiProcessor
Specification v1.4 Dec 14 15:04:15 theRev kernel: Virtual Wire compatibility
mode. Dec 14 15:04:15 theRev kernel: OEM ID: INTEL Product ID: 440FX
APIC at: 0xFEE00000 Dec 14 15:04:15 theRev kernel: Processor #0 Pentium(tm)
Pro APIC version 17 Dec 14 15:04:15 theRev kernel: Processor #1 Pentium(tm)
Pro APIC version 17 Dec 14 15:04:15 theRev kernel: I/O APIC #2 Version 17
at 0xFEC00000. Dec 14 15:04:15 theRev kernel: Processors: 2 Dec 14 15:04:15
theRev kernel: Console: 16 point font, 400 scans Dec 14 15:04:15 theRev kernel:
Console: colour VGA+ 80x25, 1 virtual console (max 63) Dec 14 15:04:15
theRev kernel: pcibios_init : BIOS32 Service Directory structure at 0x000fdb70
Dec 14 15:04:15 theRev kernel: pcibios_init : BIOS32 Service Directory entry
at 0xfdb80 Dec 14 15:04:15 theRev kernel: pcibios_init : PCI BIOS revision
2.10 entry at 0xfdba1 Dec 14 15:04:15 theRev kernel: Probing PCI hardware.
Dec 14 15:04:15 theRev kernel: Warning : Unknown PCI device (10b7:9001).
Please read include/linux/pci.h Dec 14 15:04:15 theRev kernel: Calibrating
delay loop.. ok - 179.40 BogoMIPS Dec 14 15:04:15 theRev kernel: Memory:
64268k/66556k available (700k kernel code, 384k reserved, 1204k data) Dec 14
15:04:15 theRev kernel: Swansea University Computer Society NET3.035 for
Linux 2.0 Dec 14 15:04:15 theRev kernel: NET3: Unix domain sockets 0.13 for
Linux NET3.035. Dec 14 15:04:15 theRev kernel: Swansea University Computer
Society TCP/IP for NET3.034 Dec 14 15:04:15 theRev kernel: IP Protocols:
ICMP, UDP, TCP Dec 14 15:04:15 theRev kernel: Checking 386/387 coupling. . .
Ok, fpu using exception 16 error reporting. Dec 14 15:04:15 theRev kernel:
Checking ‘hlt’ instruction. . . Ok. Dec 14 15:04:15 theRev kernel: Linux version
2.0.30 (root@theRev) (gcc version 2.7.2.1) #15 Fri Mar 27 16:37:24 PST 1998
Dec 14 15:04:15 theRev kernel: Booting processor 1 stack 00002000: Calibrating
delay loop.. ok - 179.40 BogoMIPS Dec 14 15:04:15 theRev kernel: Total of 2
processors activated (358.81 BogoMIPS). Dec 14 15:04:15 theRev kernel: Serial
driver version 4.13 with no serial options enabled Dec 14 15:04:15 theRev kernel:
tty00 at 0x03f8 (irq = 4) is a 16550A Dec 14 15:04:15 theRev kernel: tty01 at
0x02f8 (irq = 3) is a 16550A Dec 14 15:04:15 theRev kernel: lp1 at 0x0378,
(polling) Dec 14 15:04:15 theRev kernel: PS/2 auxiliary pointing device detected
– driver installed. Dec 14 15:04:15 theRev kernel: Real Time Clock Driver
v1.07 Dec 14 15:04:15 theRev kernel: loop: registered device at major 7 Dec
14 15:04:15 theRev kernel: ide: i82371 PIIX (Triton) on PCI bus 0 function 57
Dec 14 15:04:15 theRev kernel: ide0: BM-DMA at 0xffa0-0xffa7 Dec 14 15:04:15
theRev kernel: ide1: BM-DMA at 0xffa8-0xffaf Dec 14 15:04:15 theRev kernel:
hda: Conner Peripherals 1275MB - CFS1275A, 1219MB w/64kB Cache, LBA,
CHS=619/64/63 Dec 14 15:04:15 theRev kernel: hdb: Maxtor 84320A5, 4119MB
w/256kB Cache, LBA, CHS=8928/15/63, DMA Dec 14 15:04:15 theRev kernel:
hdc: , ATAPI CDROM drive Dec 15 11:58:06 theRev kernel: ide0 at 0x1f0-
0x1f7,0x3f6 on irq 14 Dec 15 11:58:06 theRev kernel: ide1 at 0x170-0x177,0x376

13

on irq 15 Dec 15 11:58:06 theRev kernel: Floppy drive(s): fd0 is 1.44M Dec 15
11:58:06 theRev kernel: Started kswapd v 1.4.2.2 Dec 15 11:58:06 theRev kernel:
FDC 0 is a National Semiconductor PC87306 Dec 15 11:58:06 theRev kernel:
md driver 0.35 MAX_MD_DEV=4, MAX_REAL=8 Dec 15 11:58:06 theRev
kernel: PPP: version 2.2.0 (dynamic channel allocation) Dec 15 11:58:06 theRev
kernel: TCP compression code copyright 1989 Regents of the University of
California Dec 15 11:58:06 theRev kernel: PPP Dynamic channel allocation code
copyright 1995 Caldera, Inc. Dec 15 11:58:06 theRev kernel: PPP line discipline
registered. Dec 15 11:58:06 theRev kernel: SLIP: version 0.8.4-NET3.019-
NEWTTY (dynamic channels, max=256). Dec 15 11:58:06 theRev kernel: eth0:
3Com 3c900 Boomerang 10Mbps/Combo at 0xef00, 00:60:08:a4:3c:db, IRQ 10
Dec 15 11:58:06 theRev kernel: 8K word-wide RAM 3:5 Rx:Tx split, 10base2
interface. Dec 15 11:58:06 theRev kernel: Enabling bus-master transmits and
whole-frame receives. Dec 15 11:58:06 theRev kernel: 3c59x.c:v0.49 1/2/98
Donald Becker http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html Dec 15
11:58:06 theRev kernel: Partition check: Dec 15 11:58:06 theRev kernel: hda:
hda1 hda2 hda3 Dec 15 11:58:06 theRev kernel: hdb: hdb1 hdb2 Dec 15 11:58:06
theRev kernel: VFS: Mounted root (ext2 filesystem) readonly. Dec 15 11:58:06
theRev kernel: Adding Swap: 16124k swap-space (priority -1) Dec 15 11:58:06
theRev kernel: EXT2-fs warning: maximal mount count reached, running e2fsck
is recommended Dec 15 11:58:06 theRev kernel: hdc: media changed Dec 15
11:58:06 theRev kernel: ISO9660 Extensions: RRIP_1991A Dec 15 11:58:07
theRev syslogd 1.3-3#17: restart. Dec 15 11:58:09 theRev diald[87]: Unable
to open options file /etc/diald/diald.options: No such file or directory Dec 15
11:58:09 theRev diald[87]: No device specified. You must have at least one device!
Dec 15 11:58:09 theRev diald[87]: You must define a connector script (option
‘connect’). Dec 15 11:58:09 theRev diald[87]: You must define the remote ip
address. Dec 15 11:58:09 theRev diald[87]: You must define the local ip address.
Dec 15 11:58:09 theRev diald[87]: Terminating due to damaged reconfigure.

The only parts of this that are readable, for normal people, are the error messages
and warnings. And yet it’s noteworthy that Linux doesn’t stop, or crash, when
it encounters an error; it spits out a pithy complaint, gives up on whatever
processes were damaged, and keeps on rolling. This was decidedly not true of
the early versions of Apple and Microsoft OSes, for the simple reason that an
OS that is not capable of walking and chewing gum at the same time cannot
possibly recover from errors. Looking for, and dealing with, errors requires a
separate process running in parallel with the one that has erred. A kind of
superego, if you will, that keeps an eye on all of the others, and jumps in when
one goes astray. Now that MacOS and Windows can do more than one thing at
a time they are much better at dealing with errors than they used to be, but
they are not even close to Linux or other Unices in this respect; and their greater
complexity has made them vulnerable to new types of errors.

FALLIBILITY, ATONEMENT, REDEMPTION, TRUST, AND OTHER AR-
CANE TECHNICAL CONCEPTS

14

Linux is not capable of having any centrally organized policies dictating how to
write error messages and documentation, and so each programmer writes his
own. Usually they are in English even though tons of Linux programmers are
Europeans. Frequently they are funny. Always they are honest. If something
bad has happened because the software simply isn’t finished yet, or because the
user screwed something up, this will be stated forthrightly. The command line
interface makes it easy for programs to dribble out little comments, warnings,
and messages here and there. Even if the application is imploding like a damaged
submarine, it can still usually eke out a little S.O.S. message. Sometimes when
you finish working with a program and shut it down, you find that it has left
behind a series of mild warnings and low-grade error messages in the command-
line interface window from which you launched it. As if the software were
chatting to you about how it was doing the whole time you were working with it.

Documentation, under Linux, comes in the form of man (short for manual) pages.
You can access these either through a GUI (xman) or from the command line
(man). Here is a sample from the man page for a program called rsh:

“Stop signals stop the local rsh process only; this is arguably wrong, but currently
hard to fix for reasons too complicated to explain here.”

The man pages contain a lot of such material, which reads like the terse mutterings
of pilots wrestling with the controls of damaged airplanes. The general feel is of
a thousand monumental but obscure struggles seen in the stop-action light of a
strobe. Each programmer is dealing with his own obstacles and bugs; he is too
busy fixing them, and improving the software, to explain things at great length
or to maintain elaborate pretensions.

In practice you hardly ever encounter a serious bug while running Linux. When
you do, it is almost always with commercial software (several vendors sell
software that runs under Linux). The operating system and its fundamental
utility programs are too important to contain serious bugs. I have been running
Linux every day since late 1995 and have seen many application programs go
down in flames, but I have never seen the operating system crash. Never. Not
once. There are quite a few Linux systems that have been running continuously
and working hard for months or years without needing to be rebooted.

Commercial OSes have to adopt the same official stance towards errors as
Communist countries had towards poverty. For doctrinal reasons it was not
possible to admit that poverty was a serious problem in Communist countries,
because the whole point of Communism was to eradicate poverty. Likewise,
commercial OS companies like Apple and Microsoft can’t go around admitting
that their software has bugs and that it crashes all the time, any more than
Disney can issue press releases stating that Mickey Mouse is an actor in a suit.

This is a problem, because errors do exist and bugs do happen. Every few months
Bill Gates tries to demo a new Microsoft product in front of a large audience only
to have it blow up in his face. Commercial OS vendors, as a direct consequence of
being commercial, are forced to adopt the grossly disingenuous position that bugs

15

are rare aberrations, usually someone else’s fault, and therefore not really worth
talking about in any detail. This posture, which everyone knows to be absurd, is
not limited to press releases and ad campaigns. It informs the whole way these
companies do business and relate to their customers. If the documentation were
properly written, it would mention bugs, errors, and crashes on every single page.
If the on-line help systems that come with these OSes reflected the experiences
and concerns of their users, they would largely be devoted to instructions on
how to cope with crashes and errors.

But this does not happen. Joint stock corporations are wonderful inventions
that have given us many excellent goods and services. They are good at many
things. Admitting failure is not one of them. Hell, they can’t even admit minor
shortcomings.

Of course, this behavior is not as pathological in a corporation as it would be
in a human being. Most people, nowadays, understand that corporate press
releases are issued for the benefit of the corporation’s shareholders and not for the
enlightenment of the public. Sometimes the results of this institutional dishonesty
can be dreadful, as with tobacco and asbestos. In the case of commercial OS
vendors it is nothing of the kind, of course; it is merely annoying.

Some might argue that consumer annoyance, over time, builds up into a kind of
hardened plaque that can conceal serious decay, and that honesty might therefore
be the best policy in the long run; the jury is still out on this in the operating
system market. The business is expanding fast enough that it’s still much better
to have billions of chronically annoyed customers than millions of happy ones.

Most system administrators I know who work with Windows NT all the time
agree that when it hits a snag, it has to be re-booted, and when it gets seriously
messed up, the only way to fix it is to re-install the operating system from
scratch. Or at least this is the only way that they know of to fix it, which
amounts to the same thing. It is quite possible that the engineers at Microsoft
have all sorts of insider knowledge on how to fix the system when it goes awry,
but if they do, they do not seem to be getting the message out to any of the
actual system administrators I know.

Because Linux is not commercial–because it is, in fact, free, as well as rather dif-
ficult to obtain, install, and operate–it does not have to maintain any pretensions
as to its reliability. Consequently, it is much more reliable. When something
goes wrong with Linux, the error is noticed and loudly discussed right away.
Anyone with the requisite technical knowledge can go straight to the source code
and point out the source of the error, which is then rapidly fixed by whichever
hacker has carved out responsibility for that particular program.

As far as I know, Debian is the only Linux distribution that has its own con-
stitution (http://www.debian.org/devel/constitution), but what really sold me
on it was its phenomenal bug database (http://www.debian.org/Bugs), which
is a sort of interactive Doomsday Book of error, fallibility, and redemption. It
is simplicity itself. When had a problem with Debian in early January of 1997,

16

I sent in a message describing the problem to submit@bugs.debian.org. My
problem was promptly assigned a bug report number (#6518) and a severity
level (the available choices being critical, grave, important, normal, fixed, and
wishlist) and forwarded to mailing lists where Debian people hang out. Within
twenty-four hours I had received five e-mails telling me how to fix the problem:
two from North America, two from Europe, and one from Australia. All of these
e-mails gave me the same suggestion, which worked, and made my problem go
away. But at the same time, a transcript of this exchange was posted to Debian’s
bug database, so that if other users had the same problem later, they would
be able to search through and find the solution without having to enter a new,
redundant bug report.

Contrast this with the experience that I had when I tried to install Windows
NT 4.0 on the very same machine about ten months later, in late 1997. The
installation program simply stopped in the middle with no error messages. I went
to the Microsoft Support website and tried to perform a search for existing help
documents that would address my problem. The search engine was completely
nonfunctional; it did nothing at all. It did not even give me a message telling
me that it was not working.

Eventually I decided that my motherboard must be at fault; it was of a slightly
unusual make and model, and NT did not support as many different motherboards
as Linux. I am always looking for excuses, no matter how feeble, to buy new
hardware, so I bought a new motherboard that was Windows NT logo-compatible,
meaning that the Windows NT logo was printed right on the box. I installed this
into my computer and got Linux running right away, then attempted to install
Windows NT again. Again, the installation died without any error message or
explanation. By this time a couple of weeks had gone by and I thought that
perhaps the search engine on the Microsoft Support website might be up and
running. I gave that a try but it still didn’t work.

So I created a new Microsoft support account, then logged on to submit the
incident. I supplied my product ID number when asked, and then began to follow
the instructions on a series of help screens. In other words, I was submitting
a bug report just as with the Debian bug tracking system. It’s just that the
interface was slicker–I was typing my complaint into little text-editing boxes on
Web forms, doing it all through the GUI, whereas with Debian you send in an
e-mail telegram. I knew that when I was finished submitting the bug report, it
would become proprietary Microsoft information, and other users wouldn’t be
able to see it. Many Linux users would refuse to participate in such a scheme on
ethical grounds, but I was willing to give it a shot as an experiment. In the end,
though I was never able to submit my bug report, because the series of linked
web pages that I was filling out eventually led me to a completely blank page: a
dead end.

So I went back and clicked on the buttons for “phone support” and eventually
was given a Microsoft telephone number. When I dialed this number I got a
series of piercing beeps and a recorded message from the phone company saying

17

“We’re sorry, your call cannot be completed as dialed.”

I tried the search page again–it was still completely nonfunctional. Then I tried
PPI (Pay Per Incident) again. This led me through another series of Web pages
until I dead-ended at one reading: “Notice-there is no Web page matching your
request.”

I tried it again, and eventually got to a Pay Per Incident screen reading: “OUT
OF INCIDENTS. There are no unused incidents left in your account. If you
would like to purchase a support incident, click OK-you will then be able to
prepay for an incident. . . .” The cost per incident was $95.

The experiment was beginning to seem rather expensive, so I gave up on the PPI
approach and decided to have a go at the FAQs posted on Microsoft’s website.
None of the available FAQs had anything to do with my problem except for one
entitled “I am having some problems installing NT” which appeared to have
been written by flacks, not engineers.

So I gave up and still, to this day, have never gotten Windows NT installed on
that particular machine. For me, the path of least resistance was simply to use
Debian Linux.

In the world of open source software, bug reports are useful information. Making
them public is a service to other users, and improves the OS. Making them public
systematically is so important that highly intelligent people voluntarily put time
and money into running bug databases. In the commercial OS world, however,
reporting a bug is a privilege that you have to pay lots of money for. But if you
pay for it, it follows that the bug report must be kept confidential–otherwise
anyone could get the benefit of your ninety-five bucks! And yet nothing prevents
NT users from setting up their own public bug database.

This is, in other words, another feature of the OS market that simply makes
no sense unless you view it in the context of culture. What Microsoft is selling
through Pay Per Incident isn’t technical support so much as the continued illusion
that its customers are engaging in some kind of rational business transaction. It
is a sort of routine maintenance fee for the upkeep of the fantasy. If people really
wanted a solid OS they would use Linux, and if they really wanted tech support
they would find a way to get it; Microsoft’s customers want something else.

As of this writing (Jan. 1999), something like 32,000 bugs have been reported to
the Debian Linux bug database. Almost all of them have been fixed a long time
ago. There are twelve “critical” bugs still outstanding, of which the oldest was
posted 79 days ago. There are 20 outstanding “grave” bugs of which the oldest
is 1166 days old. There are 48 “important” bugs and hundreds of “normal” and
less important ones.

Likewise, BeOS (which I’ll get to in a minute) has its own bug database
(http://www.be.com/developers/bugs/index.html) with its own classification
system, including such categories as “Not a Bug,” “Acknowledged Feature,” and
“Will Not Fix.” Some of the “bugs” here are nothing more than Be hackers

18

blowing off steam, and are classified as “Input Acknowledged.” For example,
I found one that was posted on December 30th, 1998. It’s in the middle of a
long list of bugs, wedged between one entitled “Mouse working in very strange
fashion” and another called “Change of BView frame does not affect, if BView
not attached to a BWindow.”

This one is entitled

R4: BeOS missing megalomaniacal figurehead to harness and focus developer
rage

and it goes like this:

Be Status: Input Acknowledged BeOS Version: R3.2 Component: unknown

Full Description:

The BeOS needs a megalomaniacal egomaniac sitting on its throne to give it
a human character which everyone loves to hate. Without this, the BeOS will
languish in the impersonifiable realm of OSs that people can never quite get a
handle on. You can judge the success of an OS not by the quality of its features,
but by how infamous and disliked the leaders behind them are.

I believe this is a side-effect of developer comraderie under miserable conditions.
After all, misery loves company. I believe that making the BeOS less conceptually
accessible and far less reliable will require developers to band together, thus
developing the kind of community where strangers talk to one- another, kind of
like at a grocery store before a huge snowstorm.

Following this same program, it will likely be necessary to move the BeOS
headquarters to a far-less-comfortable climate. General environmental discomfort
will breed this attitude within and there truly is no greater recipe for success. I
would suggest Seattle, but I think it’s already taken. You might try Washington,
DC, but definitely not somewhere like San Diego or Tucson.

Unfortunately, the Be bug reporting system strips off the names of the people
who report the bugs (to protect them from retribution!?) and so I don’t know
who wrote this.

So it would appear that I’m in the middle of crowing about the technical and
moral superiority of Debian Linux. But as almost always happens in the OS
world, it’s more complicated than that. I have Windows NT running on another
machine, and the other day (Jan. 1999), when I had a problem with it, I decided
to have another go at Microsoft Support. This time the search engine actually
worked (though in order to reach it I had to identify myself as “advanced”).

19

And instead of coughing up some useless FAQ, it located about two hundred
documents (I was using very vague search criteria) that were obviously bug
reports–though they were called something else. Microsoft, in other words,
has got a system up and running that is functionally equivalent to Debian’s
bug database. It looks and feels different, of course, but it contains technical
nitty-gritty and makes no bones about the existence of errors.

As I’ve explained, selling OSes for money is a basically untenable position, and the
only way Apple and Microsoft can get away with it is by pursuing technological
advancements as aggressively as they can, and by getting people to believe in,
and to pay for, a particular image: in the case of Apple, that of the creative free
thinker, and in the case of Microsoft, that of the respectable techno-bourgeois.
Just like Disney, they’re making money from selling an interface, a magic mirror.
It has to be polished and seamless or else the whole illusion is ruined and the
business plan vanishes like a mirage.

Accordingly, it was the case until recently that the people who wrote manuals
and created customer support websites for commercial OSes seemed to have
been barred, by their employers’ legal or PR departments, from admitting, even
obliquely, that the software might contain bugs or that the interface might be
suffering from the blinking twelve problem. They couldn’t address users’ actual
difficulties. The manuals and websites were therefore useless, and caused even
technically self-assured users to wonder whether they were going subtly insane.

When Apple engages in this sort of corporate behavior, one wants to believe
that they are really trying their best. We all want to give Apple the benefit
of the doubt, because mean old Bill Gates kicked the crap out of them, and
because they have good PR. But when Microsoft does it, one almost cannot help
becoming a paranoid conspiracist. Obviously they are hiding something from
us! And yet they are so powerful! They are trying to drive us crazy!

This approach to dealing with one’s customers was straight out of the Cen-
tral European totalitarianism of the mid-Twentieth Century. The adjectives
“Kafkaesque” and “Orwellian” come to mind. It couldn’t last, any more than the
Berlin Wall could, and so now Microsoft has a publicly available bug database.
It’s called something else, and it takes a while to find it, but it’s there.

They have, in other words, adapted to the two-tiered Eloi/Morlock structure
of technological society. If you’re an Eloi you install Windows, follow the
instructions, hope for the best, and dumbly suffer when it breaks. If you’re a
Morlock you go to the website, tell it that you are “advanced,” find the bug
database, and get the truth straight from some anonymous Microsoft engineer.

But once Microsoft has taken this step, it raises the question, once again, of
whether there is any point to being in the OS business at all. Customers might
be willing to pay $95 to report a problem to Microsoft if, in return, they get
some advice that no other user is getting. This has the useful side effect of
keeping the users alienated from one another, which helps maintain the illusion
that bugs are rare aberrations. But once the results of those bug reports become

20

openly available on the Microsoft website, everything changes. No one is going
to cough up $95 to report a problem when chances are good that some other
sucker will do it first, and that instructions on how to fix the bug will then show
up, for free, on a public website. And as the size of the bug database grows,
it eventually becomes an open admission, on Microsoft’s part, that their OSes
have just as many bugs as their competitors’. There is no shame in that; as I
mentioned, Debian’s bug database has logged 32,000 reports so far. But it puts
Microsoft on an equal footing with the others and makes it a lot harder for their
customers–who want to believe–to believe.

MEMENTO MORI

Once the Linux machine has finished spitting out its jargonic opening telegram,
it prompts me to log in with a user name and a password. At this point the
machine is still running the command line interface, with white letters on a
black screen. There are no windows, menus, or buttons. It does not respond
to the mouse; it doesn’t even know that the mouse is there. It is still possible
to run a lot of software at this point. Emacs, for example, exists in both a CLI
and a GUI version (actually there are two GUI versions, reflecting some sort of
doctrinal schism between Richard Stallman and some hackers who got fed up
with him). The same is true of many other Unix programs. Many don’t have a
GUI at all, and many that do are capable of running from the command line.

Of course, since my computer only has one monitor screen, I can only see one
command line, and so you might think that I could only interact with one
program at a time. But if I hold down the Alt key and then hit the F2 function
button at the top of my keyboard, I am presented with a fresh, blank, black
screen with a login prompt at the top of it. I can log in here and start some
other program, then hit Alt-F1 and go back to the first screen, which is still
doing whatever it was when I left it. Or I can do Alt-F3 and log in to a third
screen, or a fourth, or a fifth. On one of these screens I might be logged in as
myself, on another as root (the system administrator), on yet another I might
be logged on to some other computer over the Internet.

Each of these screens is called, in Unix-speak, a tty, which is an abbreviation
for teletype. So when I use my Linux system in this way I am going right back
to that small room at Ames High School where I first wrote code twenty-five
years ago, except that a tty is quieter and faster than a teletype, and capable of
running vastly superior software, such as emacs or the GNU development tools.

It is easy (easy by Unix, not Apple/Microsoft standards) to configure a Linux
machine so that it will go directly into a GUI when you boot it up. This way,
you never see a tty screen at all. I still have mine boot into the white-on-black
teletype screen however, as a computational memento mori. It used to be
fashionable for a writer to keep a human skull on his desk as a reminder that he
was mortal, that all about him was vanity. The tty screen reminds me that the
same thing is true of slick user interfaces.

21

The X Windows System, which is the GUI of Unix, has to be capable of running
on hundreds of different video cards with different chipsets, amounts of onboard
memory, and motherboard buses. Likewise, there are hundreds of different types
of monitors on the new and used market, each with different specifications, and
so there are probably upwards of a million different possible combinations of card
and monitor. The only thing they all have in common is that they all work in
VGA mode, which is the old command-line screen that you see for a few seconds
when you launch Windows. So Linux always starts in VGA, with a teletype
interface, because at first it has no idea what sort of hardware is attached to
your computer. In order to get beyond the glass teletype and into the GUI, you
have to tell Linux exactly what kinds of hardware you have. If you get it wrong,
you’ll get a blank screen at best, and at worst you might actually destroy your
monitor by feeding it signals it can’t handle.

When I started using Linux this had to be done by hand. I once spent the better
part of a month trying to get an oddball monitor to work for me, and filled the
better part of a composition book with increasingly desperate scrawled notes.
Nowadays, most Linux distributions ship with a program that automatically
scans the video card and self-configures the system, so getting X Windows up
and running is nearly as easy as installing an Apple/Microsoft GUI. The crucial
information goes into a file (an ASCII text file, naturally) called XF86Config,
which is worth looking at even if your distribution creates it for you automatically.
For most people it looks like meaningless cryptic incantations, which is the
whole point of looking at it. An Apple/Microsoft system needs to have the
same information in order to launch its GUI, but it’s apt to be deeply hidden
somewhere, and it’s probably in a file that can’t even be opened and read by a
text editor. All of the important files that make Linux systems work are right
out in the open. They are always ASCII text files, so you don’t need special
tools to read them. You can look at them any time you want, which is good,
and you can mess them up and render your system totally dysfunctional, which
is not so good.

At any rate, assuming that my XF86Config file is just so, I enter the command
“startx” to launch the X Windows System. The screen blanks out for a minute,
the monitor makes strange twitching noises, then reconstitutes itself as a blank
gray desktop with a mouse cursor in the middle. At the same time it is launching
a window manager. X Windows is pretty low-level software; it provides the
infrastructure for a GUI, and it’s a heavy industrial infrastructure. But it doesn’t
do windows. That’s handled by another category of application that sits atop X
Windows, called a window manager. Several of these are available, all free of
course. The classic is twm (Tom’s Window Manager) but there is a smaller and
supposedly more efficient variant of it called fvwm, which is what I use. I have
my eye on a completely different window manager called Enlightenment, which
may be the hippest single technology product I have ever seen, in that (a) it is
for Linux, (b) it is freeware, (c) it is being developed by a very small number
of obsessed hackers, and (d) it looks amazingly cool; it is the sort of window
manager that might show up in the backdrop of an Aliens movie.

22

Anyway, the window manager acts as an intermediary between X Windows and
whatever software you want to use. It draws the window frames, menus, and so
on, while the applications themselves draw the actual content in the windows.
The applications might be of any sort: text editors, Web browsers, graphics
packages, or utility programs, such as a clock or calculator. In other words,
from this point on, you feel as if you have been shunted into a parallel universe
that is quite similar to the familiar Apple or Microsoft one, but slightly and
pervasively different. The premier graphics program under Apple/Microsoft is
Adobe Photoshop, but under Linux it’s something called The GIMP. Instead
of the Microsoft Office Suite, you can buy something called ApplixWare. Many
commercial software packages, such as Mathematica, Netscape Communicator,
and Adobe Acrobat, are available in Linux versions, and depending on how you
set up your window manager you can make them look and behave just as they
would under MacOS or Windows.

But there is one type of window you’ll see on Linux GUI that is rare or nonexistent
under other OSes. These windows are called “xterm” and contain nothing but
lines of text–this time, black text on a white background, though you can make
them be different colors if you choose. Each xterm window is a separate command
line interface–a tty in a window. So even when you are in full GUI mode, you
can still talk to your Linux machine through a command-line interface.

There are many good pieces of Unix software that do not have GUIs at all.
This might be because they were developed before X Windows was available, or
because the people who wrote them did not want to suffer through all the hassle
of creating a GUI, or because they simply do not need one. In any event, those
programs can be invoked by typing their names into the command line of an
xterm window. The whoami command, mentioned earlier, is a good example.
There is another called wc (“word count”) which simply returns the number of
lines, words, and characters in a text file.

The ability to run these little utility programs on the command line is a great
virtue of Unix, and one that is unlikely to be duplicated by pure GUI operating
systems. The wc command, for example, is the sort of thing that is easy to write
with a command line interface. It probably does not consist of more than a few
lines of code, and a clever programmer could probably write it in a single line. In
compiled form it takes up just a few bytes of disk space. But the code required
to give the same program a graphical user interface would probably run into
hundreds or even thousands of lines, depending on how fancy the programmer
wanted to make it. Compiled into a runnable piece of software, it would have a
large overhead of GUI code. It would be slow to launch and it would use up a
lot of memory. This would simply not be worth the effort, and so “wc” would
never be written as an independent program at all. Instead users would have to
wait for a word count feature to appear in a commercial software package.

GUIs tend to impose a large overhead on every single piece of software, even the
smallest, and this overhead completely changes the programming environment.
Small utility programs are no longer worth writing. Their functions, instead,

23

tend to get swallowed up into omnibus software packages. As GUIs get more
complex, and impose more and more overhead, this tendency becomes more
pervasive, and the software packages grow ever more colossal; after a point they
begin to merge with each other, as Microsoft Word and Excel and PowerPoint
have merged into Microsoft Office: a stupendous software Wal-Mart sitting on
the edge of a town filled with tiny shops that are all boarded up.

It is an unfair analogy, because when a tiny shop gets boarded up it means
that some small shopkeeper has lost his business. Of course nothing of the kind
happens when “wc” becomes subsumed into one of Microsoft Word’s countless
menu items. The only real drawback is a loss of flexibility for the user, but it
is a loss that most customers obviously do not notice or care about. The most
serious drawback to the Wal-Mart approach is that most users only want or
need a tiny fraction of what is contained in these giant software packages. The
remainder is clutter, dead weight. And yet the user in the next cubicle over will
have completely different opinions as to what is useful and what isn’t.

The other important thing to mention, here, is that Microsoft has included a
genuinely cool feature in the Office package: a Basic programming package.
Basic is the first computer language that I learned, back when I was using the
paper tape and the teletype. By using the version of Basic that comes with
Office you can write your own little utility programs that know how to interact
with all of the little doohickeys, gewgaws, bells, and whistles in Office. Basic
is easier to use than the languages typically employed in Unix command-line
programming, and Office has reached many, many more people than the GNU
tools. And so it is quite possible that this feature of Office will, in the end,
spawn more hacking than GNU.

But now I’m talking about application software, not operating systems. And as
I’ve said, Microsoft’s application software tends to be very good stuff. I don’t
use it very much, because I am nowhere near their target market. If Microsoft
ever makes a software package that I use and like, then it really will be time to
dump their stock, because I am a market segment of one.

GEEK FATIGUE

Over the years that I’ve been working with Linux I have filled three and a half
notebooks logging my experiences. I only begin writing things down when I’m
doing something complicated, like setting up X Windows or fooling around with
my Internet connection, and so these notebooks contain only the record of my
struggles and frustrations. When things are going well for me, I’ll work along
happily for many months without jotting down a single note. So these notebooks
make for pretty bleak reading. Changing anything under Linux is a matter of
opening up various of those little ASCII text files and changing a word here
and a character there, in ways that are extremely significant to how the system
operates.

Many of the files that control how Linux operates are nothing more than command
lines that became so long and complicated that not even Linux hackers could

24

type them correctly. When working with something as powerful as Linux, you
can easily devote a full half-hour to engineering a single command line. For
example, the “find” command, which searches your file system for files that
match certain criteria, is fantastically powerful and general. Its “man” is eleven
pages long, and these are pithy pages; you could easily expand them into a whole
book. And if that is not complicated enough in and of itself, you can always pipe
the output of one Unix command to the input of another, equally complicated
one. The “pon” command, which is used to fire up a PPP connection to the
Internet, requires so much detailed information that it is basically impossible
to launch it entirely from the command line. Instead you abstract big chunks
of its input into three or four different files. You need a dialing script, which
is effectively a little program telling it how to dial the phone and respond to
various events; an options file, which lists up to about sixty different options on
how the PPP connection is to be set up; and a secrets file, giving information
about your password.

Presumably there are godlike Unix hackers somewhere in the world who don’t
need to use these little scripts and options files as crutches, and who can simply
pound out fantastically complex command lines without making typographical
errors and without having to spend hours flipping through documentation. But
I’m not one of them. Like almost all Linux users, I depend on having all of
those details hidden away in thousands of little ASCII text files, which are in
turn wedged into the recesses of the Unix filesystem. When I want to change
something about the way my system works, I edit those files. I know that
if I don’t keep track of every little change I’ve made, I won’t be able to get
your system back in working order after I’ve gotten it all messed up. Keeping
hand-written logs is tedious, not to mention kind of anachronistic. But it’s
necessary.

I probably could have saved myself a lot of headaches by doing business with a
company called Cygnus Support, which exists to provide assistance to users of
free software. But I didn’t, because I wanted to see if I could do it myself. The
answer turned out to be yes, but just barely. And there are many tweaks and
optimizations that I could probably make in my system that I have never gotten
around to attempting, partly because I get tired of being a Morlock some days,
and partly because I am afraid of fouling up a system that generally works well.

Though Linux works for me and many other users, its sheer power and generality
is its Achilles’ heel. If you know what you are doing, you can buy a cheap PC
from any computer store, throw away the Windows discs that come with it, turn
it into a Linux system of mind-boggling complexity and power. You can hook it
up to twelve other Linux boxes and make it into part of a parallel computer. You
can configure it so that a hundred different people can be logged onto it at once
over the Internet, via as many modem lines, Ethernet cards, TCP/IP sockets,
and packet radio links. You can hang half a dozen different monitors off of it and
play DOOM with someone in Australia while tracking communications satellites
in orbit and controlling your house’s lights and thermostats and streaming live

25

video from your web-cam and surfing the Net and designing circuit boards on the
other screens. But the sheer power and complexity of the system–the qualities
that make it so vastly technically superior to other OSes–sometimes make it
seem too formidable for routine day-to-day use.

Sometimes, in other words, I just want to go to Disneyland.

The ideal OS for me would be one that had a well-designed GUI that was easy
to set up and use, but that included terminal windows where I could revert to
the command line interface, and run GNU software, when it made sense. A few
years ago, Be Inc. invented exactly that OS. It is called the BeOS.

26

Shell	Scripting	Tutorial
Type Web	Page
URL http://www.shellscript.sh/

Accessed 10/25/2016,	4:29:06	PM
Abstract From	the	Shell	Scripting	Tutorial	at	http://shellscript.sh/

Date	Added 10/25/2016,	4:29:06	PM
Modified 10/25/2016,	4:29:06	PM

Notes:

Shell	Scripting
â€œShell	Scripting	Tutorial.â€​	Accessed	October	25,	2016.	http://www.shellscript.sh/.

Unix	Shell	Scripting	Tutorial
Type Web	Page
URL http://supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/unixscripting/unixscripting.html

Accessed 10/25/2016,	4:29:15	PM
Date	Added 10/25/2016,	4:29:15	PM
Modified 10/25/2016,	4:29:15	PM

Notes:

Shell	Scripting
â€œUnix	Shell	Scripting	Tutorial.â€​	Accessed	October	25,	2016.

http://supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/unixscripting/unixscripting.html

LaTeX-a	document-preparation	system
Type Book
Author Leslie	Lampor

Date	Added 10/25/2016,	7:34:49	PM
Modified 10/25/2016,	7:35:18	PM

Notes:

LaTeX	explained	by	its	author
pdftk	LaTeX-a\	document-preparation\	system-2ed_La\	-\	Leslie\	Lampor.pdf	cat	17-26	output	Latex_Lampor_chp1.pdf

For	an	up-to-date	guide	to	LaTeX	see	the	Wikibook	on	https://en.wikibooks.org/wiki/LaTeX

Attachments

Latex_Lampor_chp1.pdf

CHAPTER 1

Getting
Acquainted

2 Getting Acquainted

I¥IE)C !is a system for typesetting documents. Its first widely available version,
myste~iously numbered 2.09, appeared in 1985. I¥IE)C is now extremely popular
in the ~cientific and academic communities, and it is used extensively in industry.
It has ~ecome a lingua franca of the scientific world; scientists send their papers
electrop.ically to colleagues around the world in the form of H\1EX input.

Over the years, various nonstandard enhancements were made to H\1EX 2.09
to ove~come some of its limitations. H\1EX input that made use of these en­
hance$ents would not work properly at all sites. A new version of ~ was
needed to keep a Tower of Babel from rising. The current version of H\'IEX,
with the somewhat less mysterious number 2£, was released in 1994. H\1EX2£
contaiQs an improved method for handling different styles of type, commands
for inc~uding graphics and producing colors, and many other new features.

Almost all standard H\1EX 2.09 input files will work with H\1EX 2£. However,
to take advantage of the new features, users must learn a few new H\1EX 2£
conventions. H\1EX 2.09 users should read Appendix D to find out what has
changed. The rest of this book is about OOEX, which, until a newer version
appears, means H\1EX 2£.

H\'IEX is available for just about any computer made today. The versions
that run on these different systems are essentially the same; an input file created
according to the directions in this book should produce the same output with
any of them. However, how you actually run H\1EX depends upon the computer
system. Moreover, some new features may not be available on all systems when
H\1EX 2£ is first released. For each computer system, there is a short companion
to this book, titled something like Local Guide to H\1EX for the McKludge PC,
containing information specific to that system. I will call it simply the Local
Guide. It is distributed with the H\1EX software.

There is another companion to this book, The H\1EX Companion by Goossens,
Mittelbach, and Samarin [3). This companion is an in-depth guide to H\1EX and
to its p<ltckages-standard enhancements that can be used at any site to provide
addition.al features. The H\1EX Companion is the place to look if you can't find
what you need in this book. It describes more than a hundred packages.

1.1 How to Avoid Reading This Book

Many people would rather learn about a program at their computer than by
reading a book. There is a small sample H\1EX input file named sma1l2e. tex
that shows how to prepare your own input files for typesetting simple documents.
Before reading any further, you might want to examine sma1l2e. tex with a text
editor and modify it to make an input file for a document of your own, then
run H\1EX on this file and see what it produces. The Local Guide will tell you
how to find sma1l2e. tex and run H\1EX on your computerj it may also contain
information about text editors. Be careful not to destroy the original version of
sma1l2e. texj you'll probably want to look at it again.

1.2 How to Read This Book

The file sma1l2e. tex is only forty lines long, and it shows how to produce
only very simple documents. There is a longer file named sample2e. tex that
contains more information. If smal12e. tex doesn't tell you how to do some­
thing, you can try looking at sample2e. tex.

If you prefer to learn more about a program before you use it, read on.
Almost everything in the sample input files is explained in the first two chapters
of this book.

1.2 How to Read This Book

While sample2e. tex illustrates many of H\1E)C's features, it is still only about
two hundred lines long, and there is a lot that it doesn't explain. Eventually,
you will want to typeset a document that requires more sophisticated formatting
than you can obtain by imitating the two sample input files. You will then have
to look in this book for the necessary information. You can read the section
containing the information you need without having to read everything that
precedes it. However, all the later chapters assume you have read Chapters 1
and 2. For example, suppose you want to set one paragraph of a document in
small type. Looking up "type size" in the index or browsing through the table
of contents will lead you to Section 6.7.1, which talks about "declarations" and
their "scope" -simple concepts that are explained in Chapter 2. It will take just
a minute or two to learn what to do if you've already read Chapter 2j it could
be quite frustrating if you haven't. So, it's best to read the first two chapters
now, before you need them.

H\1E)C's input is a file containing the document's text together with com­
mands that describe the document's structurej its output is a file of typesetting
instructions. Another program must be run to convert these instructions into
printed output. With a high-resolution printer, H\1E)C can generate book-quality
typesetting.

This book tells you how to prepare a H\1E)C input file. The current chapter
discusses the philosophy underlying H\1E)Cj here is a brief sketch of what's in the
remaining chapters and appendices:

Chapter 2 explains what you should know to handle most simple documents
and to read the rest of the book. Section 2.5 contains a summary of
everything in the chapter; it serves as a short reference manual.

Chapter 3 describes logical structures for handling a variety of formatting
problems. Section 3.4 explains how to define your own commands, which
can save typing when you write the document and retyping when you
change it. It's a good idea to read the introduction-up to the beginning
of Section 3.1-before reading any other part of the chapter.

3

4 Getting Acquainted

Chapter 4 contains features especially useful for large documents, including
automatic cross-referencing and commands for splitting a large file into
smaller pieces. Section 4.7 discusses sending your document electronically.

Chapter 5 is about making books, slides, and letters (the kind you send by
post).

Chapter 6 describes the visual formatting of the text. It has information about
changing the style of your document, explains how to correct bad line and
page breaks, and tells how to do your own formatting of structures not
explicitly handled by I¥IE;X.

Chapter 7 discusses pictures-drawing them yourself and inserting ones pre­
pared with other programs-and color.

Chapter 8 explains how to deal with errors. This is where you should look
when I¥IE;X prints an error message that you don't understand.

Appendix A describes how to use the Makelndex program to make an index.

Appendix B describes how to make a bibliographic database for use with
BIBTEX, a separate program that provides an automatic bibliography fea­
ture for I¥JEX.

Appendix C is a reference manual that compactly describes all I¥JEX's fea­
tures, including many advanced ones not described in the main text. If a
command introduced in the earlier chapters seems to lack some necessary
capabilities, check its description here to see if it has them. This appendix
is a convenient place to refresh your memory of how something works.

Appendix D describes the differences between the current version of I¥IE;X
and the original version, I¥IE;X 2.09.

Appendix E is for the reader who knows 'lEX, the program on which Ib-'lEX
is built, and wants to use 'lEX commands that are not described in this
book.

When you face a formatting problem, the best place to look for a solution is in
the table of contents. Browsing through it will give you a good idea of what
Ib-'lEX has to offer. If the table of contents doesn't work, look in the index; I
have tried to make it friendly and informative.

Each section of Chapters 3-7 is reasonably self-contained, assuming only
that you have read Chapter 2. Where additional knowledge is required, explicit
cross-references are given. Appendix C is also self-contained, but a command's
description may be hard to understand without first reading the corresponding
description in the earlier chapters.

The descriptions of most Ib-'lEX commands include examples of their use. In
this book, examples are formatted in two columns, as follows:

1.3 The Game of the Name

The left column shows the printed output; the right
column contains the input that produced it.

The left column shows the printed output;
the right column contains the input that
produced it.

Note the special typewriter type style in the right column. It indicates what
you type-either text that you put in the input file or something like a file name
that you type as part of a command to the computer.

Since the sample output is printed in a narrower column, and with smaller
type, than J¥IEX normally uses, it won't look exactly like the output you'd get
from that input. The convention of the output appearing to the left of the .
corresponding input is generally also used when commands and their output are
listed in tables.

1.3 The Game of the Name

The 'lEX in ~'lEX refers to Donald Knuth's 'lEX typesetting system. The ~'lEX
program is a special version of 'lEX that understands ~'lEX commands. Think
of~'lEX as a house built with the lumber and nails provided by 'lEX. You don't
need lumber and nails to live in a house, but they are handy for adding an extra
room. Most ~'lEX users never need to know any more about 'lEX than they can
learn from this book. However, the lower-level 'lEX commands described in The
'JEXbook 14] can be very useful when creating a new package for ~'lEX.

I will use the term "'lEX" when describing standard 'lEX features and "~'lEX"
when describing features unique to ~'lEX, but the distinction will be of interest
mainly to readers already familiar with 'lEX. You may ignore it and use the two
names interchangeably.

One of the hardest things about using ~'lEX is deciding how to pronounce
it. This is also one ofthe few things I'm not going to tell you about ~'lEX, since
pronunciation is best determined by usage, not fiat. 'lEX is usually pronounced
teck, making lah-teck, lah-teck, and lay-teck the logical choices; but language is
not always logical, so lay-tecks is also possible.

The written word carries more legal complications than the spoken, and the
need to distinguish 'lEX and ~'lEX from similarly spelled products restricts how
you may write them. The best way to refer to these programs is by their logos,
which can be generated with simple ~'lEX commands. When this is impossible,
as in an e-mail message, you should write them as TeX and LaTeX, where the
unusual capitalization identifies these computer programs.

1.4 Turning Typing into Typography

Traditionally, an author provides a publisher with a typed manuscript. The
publisher's typographic designer decides how the manuscript is to be formatted,
specifying the length of the printed line, what style of type to use, how much

5

6 Getting Acquainted

space to leave above and below section headings, and many other things that
determine the printed document's appearance. The designer writes a series of
instructions to the typesetter, who uses them to decide where on the page to put
each of the author's words and symbols. In the old days, typesetters produced
a matrix of metal type for each page; today they produce computer files. In
either case, their output is used to control the machine that does the actual
typesetting. .

J¥IEX is your typographic designer, and 'lEX is its typesetter. The ~'IEX
commands that you type are translated into lower-level 'lEX typesetting com­
mands. Being a modern typesetter, 'lEX produces a computer file, called the
device-independent or dvi file. The Local Guide explains how to use this file
to generate a printed document with your computer. It also explains how to
view your document on your computer, using a screen previewer. Unless your
document is very short, you will want to see the typeset version as you're writing
it. Use a previewer instead of laying waste to our planet's dwindling forests by
printing lots of intermediate versions. In fact, unless you want to take a copy
with you on a wilderness expedition, you may never have to print it at all. It
is easier and faster to distribute your document electronically than by mailing
paper copies.

A human typographic designer knows what the manuscript is generally about
and uses this knowledge in deciding how to format it. Consider the following
typewritten manuscript:

The German mathematician Kronecker, sitting
quietly at his desk, wrote:

God created the whole numbers; all
the rest is man's work.

Seated in front of the terminal, with Basic
hanging on my every keystroke, I typed:

for i = 1 to infinity
let number[i] = i

A human designer knows that the first indented paragraph (God created ...)
is a quotation and the second is a computer program, so the two should be
formatted differently. He would probably set the quotation in ordinary roman
type and the computer program in a typewriter type style. ~'IEX is only a
computer program and can't understand English, so it can't figure all this out
by itself. It needs more help from you than a human designer would.

The function of typographic design is to help the reader understand the au­
thor's ideas. For a document to be easy to read, its visual structure must reflect
its logical structure. Quotations and computer programs, being logically distinct
structural elements, should be distinguished visually from one another. The de­
signer should therefore understand the document's logical structure. Since ~'IEX
can't understand your prose, you must explicitly indicate the logical structure
by typing special commands. The primary function of almost all the ~1EX

1.5 Why D-'I}}X?

commands that you type should be to describe the logical structure of your doc­
ument. As you are writing your document, you should be concerned with its
logical structure, not its visual appearance. The J¥IEX approach to typesetting
can therefore be characterized as logical design.

1.5 Why D-1}X?

When "9-'JEX was introduced in 1985, few authors had the facilities for typesetting
their own documents. Today, desktop publishing is commonplace. You can buy
a "WYSIWYG" (what you see is what you get) program that lets you see exactly
what your document will look like as you type it. WYSIWYG programs are very
appealing. They make it easy to put text wherever you want in whatever size
and style of type you want. Why use "9-'JEX, which requires you to tell it that a
piece of text is a quotation or a computer program, when a WYSIWYG program
allows you to format the text just the way you want it?

WYSIWYG programs replace "9-'JEX's logical design with visual design. Vi­
sual design is fine for short, simple documents like letters and memos. It is
not good for more complex documents such as scientific papers. WYSIWYG has
been characterized as "what you see is all you've got".1 To illustrate the advan­
tage of logical over visual design, I will consider a simple example from the file
sample2e . tex.

N ear the top of the second page of the document is the mathematical term
(A,B). With a WYSIWYG program, this term is entered by typing (A,B). You
could type it the same way in the "9-'JEX input. However, the term represents a
mathematical structure-the inner product of A and B. An experienced "9-'JEX
user will define a command to express this structure. The file sample2e. tex
defines the command \ip so that \ip{AHB} produces (A, B). The term (f, 'IjI')
near the end of the document is also an inner product and is produced with the
\ip command.

Suppose you decide that there should be a little more space after the comma
in an inner product. Just changing the definition of the \ip command will
change (A, B) to (A, B) and (f, 'IjI') to (f, 'IjI'). With a WYSIWYG program,
you would have to insert the space by hand in each formula-not a problem
for a short document with two such terms, but a mathematical paper could
contain dozens and a book could contain hundreds. You would probably produce
inconsistent formatting by missing some formulas or forgetting to add the space
when ente~ing new ones. With "9-'JEX, you don't have to worry about formatting
while writing your document. Formatting decisions can be made and changed
at any time.

The advantage of logical design becomes even more obvious if you decide
that you prefer the notation (AlB) for the inner product of A and B. The

1 Brian Reid attributes this phrase to himself and/or Brian Kernighan.

7

8 Getting Acquainted

file sample2e. tex contains an alternate definition of \ip that produces this
notation.

Typing \ip{AHB} is just a little more work than typing (A ,B) (though it's a
lot easier than entering (AlB) if the symbols "(" and ")" must be chosen with a
mouse from a pull-down menu). But this small effort is rewarded by the benefits
of maintaining the logical structure of your document instead of just its visual
appearance.

One advantage of WYSIWYG programs is that you can see the formatted
version of your document while writing it. Writing requires reading what you
have already written. Although you want I~rIEX to know that the term is an
inner product, you would like to read (A,B) or (AlB), not \ip{AHB}. The
speed of modern computers has eliminated much of this advantage. I now type
a couple of keystrokes and, a few seconds later, a typeset version of the section
I am working on appears on my screen. As computers get faster, those few
seconds will turn into a fraction of a second.

1.6 Turning Ideas into Input

The purpose of writing is to present your ideas to the reader. This should always
be your primary concern. It is easy to become so engrossed with form that you
neglect content. Formatting is no substitute for writing. Good ideas couched in
good prose will be read and understood, regardless of how badly the document
is formatted. I¥IEX was designed to free you from formatting concerns, allowing
you to concentrate on writing. If you spend a lot of time worrying about form,
you are misusing I¥IEX.

Even if your ideas are good, you can probably learn to express them better.
The classic introduction to writing English prose is Strunk and White's brief
Elements of Style [6). A more complete guide to using language properly is
Theodore Bernstein's The Careful Writer [1J. These two books discuss general
writing style. Writers of scholarly or technical prose need additional informa­
tion. Mary-Claire van Leunen's Handbook for Scholars [7) is a delightful guide
to academic and scholarly writing. The booklet titled How to Write Mathe­
matics [5) can help scientists and engineers as well as mathematicians. It's also
useful to have a weightier reference book at hand; Words into Type [8) and the
Chicago Manual of Style [2] are two good ones.

1.7 Trying It Out

You may already have run I~rIEX with input based on the sample files. If not,
this is a good time to learn how. The section in the Local Guide titled Running
a Sample File explains how to obtain a copy of the file sample2e. tex and run
I¥IEX with it as input. Follow the directions and see what "9-'IEX can do.

1. 7 Trying It Out

After printing the document generated in this way, try changing the docu­
ment's format. Using a text editor, examine the file sample2e. tex. A few lines
down from the beginning of the file is a line that reads

\documentclass{article}

Change that line to

\documentclass [twocolumn] {article}

Save the changed file under the name chgsam. tex, and use this file to print a
new version of the document. To generate the new version, do exactly what
you did the last time, except type chgsam wherever you had typed sample2e.
Comparing the two printed versions shows how radically the appearance of the
document can be altered by a simple change to a command. To try still another
format, change chgsam. tex so the line above reads

\documentclass[12pt]{article}

and use the changed file to print a third version of the document.
From now on, I will usually ignore the process of going from the Ib'IEX input

file to the printed output and will write something like: "Typing --- produces
a long dash." What this really means is that putting the three characters --­
in your input file will, when that file is processed by H\1EX and the device­
independent file printed, produce a long dash in the printed output.

9

1

1

1
1

1
1
1

1
1
1

1
1

1
1
1

1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1

1
1
1

1
1

1
1
1

1
1
1

1
1

1

1
1

1
1
1

1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1

1
1
1

Conferences	floss	art	school	-	Media	Design
Type Web	Page
URL http://pzwiki.wdka.nl/mediadesign/Conferences_floss_art_school

Accessed 10/25/2016,	6:19:33	PM
Date	Added 10/25/2016,	6:19:33	PM
Modified 10/25/2016,	6:20:01	PM

Notes:

Floss	Art	School

â€œConferences	Floss	Art	School	-	Media	Design.â€​	Accessed	October	25,	2016.	http://pzwiki.wdka.nl/mediadesign/Conferences_floss_art_school.

wget	--quiet	--output-document=FLOSS_Art-school.html		"http://pzwiki.wdka.nl/mw-mediadesign/index.php?title=Conferences_floss_art_school&action=render";	pandoc	FLOSS_Art-school.html	--from	html	--to	latex	--output	FLOSS_Art-school.pdf;	rm	FLOSS_Art-school.html	

Attachments

FLOSS_Art-school.pdf

Contents
• 1 How to run an art school on Free Software/Open Source?

– 1.1 Introduction
∗ 1.1.1 Florian
∗ 1.1.2 Aymeric

– 1.2 Media Design?
∗ 1.2.1 Michael
∗ 1.2.2 Florian
∗ 1.2.3 Michael
∗ 1.2.4 Aymeric
∗ 1.2.5 Florian

– 1.3 Networked Media Design
∗ 1.3.1 Florian
∗ 1.3.2 Aymeric
∗ 1.3.3 Florian
∗ 1.3.4 Aymeric

– 1.4 Under the Hood
∗ 1.4.1 Michael
∗ 1.4.2 Aymeric
∗ 1.4.3 Florian
∗ 1.4.4 Aymeric

– 1.5 Concluding Example: Shahee Ilyas, Framing Leaders
– 1.6 Translating FLOSS into the School Context (Conclusions)

∗ 1.6.1 Florian
∗ 1.6.2 Michael
∗ 1.6.3 Aymeric
∗ 1.6.4 Florian

• 2 Bibliography

How to run an art school on Free Software/Open
Source?

(Florian Cramer, Aymeric Mansoux, Michael Murtaugh, 2010)

Introduction

We each introduce ourselves briefly.

1

Florian

• Images: website, students in classroom, gordo in studio

We have to admit that this title is a hyperbole. Actually, we are not talking
about our entire art school, but only one study programme: the Networked
Media Master at the Piet Zwart Institute of the Willem de Kooning Academy
in Rotterdam, the Netherlands. It is a small, very international and cross-
disciplinary new media design and art programme in the graduate school of
Rotterdam’s traditional art academy. Our students have backgrounds as graphic
and web designers, media artists and activists, but also include architects, fine
artists and even a dancer. Our common interest is to critically think about
digital and computer media, and create one’s own media work based on that
thinking and research. The most simple formula we use is the following: it’s
media design as design of media, not just with media. And that’s where Free
Software and Open Source come in - because they provide the building blocks
for these self-created media.

• Light writer: Ricardo Lafuente: a self-created medium on the basis of the
Arduino board

• Web 2.0 Suicide Machine: Gordon Savicic/Danja Vasiliev: a Web applica-
tion that thoroughly deletes your social media profiles.

Aymeric

So when we talk about Free and Open Source (FLOSS) in our department,
we do not simply mean the scenario of replacing Photoshop with The Gimp,
Max/MSP with Pure Data, Cinema 4d with Blender, and so on. We are more
interested in FLOSS as an entry point into a different media practice - based on a
comprehensive critical rethinking of communication in its relation to technology.
Apart from that, we have a very practical interest in the non-mainstream tools
and work flows provided by Open Source and Free Software (ref web 2.0 suicide
machine). This puts us into a different camp than even the GNU Project of the
Free Software Foundation because our concern is not to obtain free alternatives
to existing software, no matter how this software is designed.

Media Design?

Michael

• Ivan Monroy Lopez, man immigration

(Former co-course director) Matthew Fuller would use the example of “vapour-
ware”, software that is announced and discussed without ever being actually
released to the public (or perhaps even being written at all), as a simple example
of how software is a cultural, and not just technical phenomenon.

2

Florian

• Darija Medic: The “us” in virus, artistic/activist reflection of openness in
the medium of a “viral” sticker campaign

For example this piece evokes software, while taking the form of stickers.

Michael

Using open source in art education is also about using new methodologies and
approaches to teaching. Traditionally “good design” is equated with notions
of “simplicity” and “seamlessness”. The Faux-metal skins popular in current
interface design seems to respond to a need to reassure the user of a stability and
sturdiness. Free software often reveals the underlying assumptions and decisions
that have been in the design of software and confronts the user take an active
position in how they want to work, with what tools on what terms. Open source
confronts students with the fact that software is developed in communities, with
differing philosophies / approaches / priorities.

• Epicpedia: Annemieke van der Hoek

Presents wikipedia articles as a dramatic conversation over time, as opposed to
a seamless essay.

For me personally, as a software developer, the experience of working with free
software has encouraged me to shift from a “make everything from scratch”
way of thinking to one that is more modular, and which looks towards tapping
into existing code and software communities; I’ve come to value the creative
potential of simply making novel connections between existing systems; In
addition, conceiving a project as a pipeline opens it up to collaboration, and
broadens the range of your work beyond your own particular skills or interests.

Aymeric

The pipeline, as an approach to creating an artistic work, is in dramatic contrast
to a traditional image of the “isolated artist working in the ‘clean room’ of
his/her creative suite. . . ” and recasts work as being a flow of material across
different sources. aknowledges that the tools are themselves represent decisions,
assumptions, work of others, negotations/compromises

Often a project can have a powerful impact simply by making an unexpected
connection between systems.

• Timo Klok (in collaboration): Pirates of the Amazon

(many ppl thought it was a crack.)

3

Florian

We are also critical about the typical divide between designers on the one side
and engineers on the other. It’s the classical new media trap where the artist
develops the vision, the technician the code, and the result is disappointing
because neither speak each other’s language.

Networked Media Design

Florian

You could say that FLOSS Artistic tools are not as professional as the Adobe
suite. I think we are in the same situation as database servers in the 1990’s.
MySQL was criticized for lacking the full feature set of Oracle, just as the GIMP
is now criticized for lacking the features of Photoshop. The breakthough of
MySQL came with the rise of the web, and the need to have simple flexible
solutions without licensing fees. Unlike photoshop, the gimp can be run on a
server to generate graphics in real time. In addition, the growing important
generative design creates an ideal situation for Open source tools.

Aymeric

One of the key aspect of the program is to get students to question their work
flows, their tools, their assumptions. A key challenge is getting students to
stop thinking in terms of “what can the software do for me”, and switch the
mentality to “what can I do with software”,and eventually create their own
programs. This means to pull students out of a production mode of “getting
things done” and into a more reflective manner of work. The complexity inherent
to using Free Software is often very good for this purpose. (Even if we are
repeating ourselves here, it’s still important to keep stressing it:) We would
like to encourage FLOSS developers not to strive for a better Photoshop, a
better Illustrator or a better Final Cut Pro, but build artistic design tools on
the traditional virtues of programmable and networked Free Software. We need
more software projects that are low level enough to allow artists and designers to
develop their your own GUI metaphors, command line tools and of course artistic
software, while - at the same time - being accessible and usable without a degree
in Computer Science. Software like the Unix/GNU text tools, ImageMagick,
and frameworks like MLT really shine in this respect.

Florian

These are concrete practical issues for us. But there’s also the level of media
theory and criticism which is integral to our study programme and the way we

4

work and think. Free Software and Open Source is useful in this context, too.
It can serve as a critical tool because it cuts into all major social, economic,
political and artistic issues of information ownership, media governance and
participation. However, it is no magical bullet.

Looking at the founding manifesto of the Open Source movement, Eric S.
Raymond’s “The Cathedral and the Bazaar”, we see that it is based on the
notion that an open system, or a free flow of information and labor, will result
in a self-regulating whole providing optimal solutions for everyone. Today, we
now that this has been over-optimistic thinking of the 1990s.

Aymeric

If we see where Free Software and Open Source are today, more than ten years
after Raymond’s manifesto, then some questions need to be asked: In the Internet
‘cloud’, in all kinds of embedded devices from routers to media players, and now
on mobile phones, Free Software is mostly used as a cheap productivity stack
underneath proprietary technology. The “world domination” it achieved this
way is quite different from the one imagined in the 1990s. But investigating such
questions is exactly what makes a study programme like ours more engaging,
and hopefully helps us to have a larger vision of media and design.

Under the Hood

Michael

(image: mac_issues)

Early in the course, we have sessions to install Linux onto student’s laptops
(often leaving their original OS – Mac or Windows – intact). The experience is
an important one – a key moment to confront students with a question of what
exactly is the computer in front of them?

(image: Ted Nelson: Computer Lib)

Breaking through the glossy veneer of a polished operating system designed to
“just work”, is a crucial first step in understanding the computer and it’s software
as a socially constructed assemblage: of electronic components, of software, of
legal agreements all with a particular history.

(image: Danja: meme 2.0) (for example this is Danja Vasilijev’s implementation
of a web server as a physical object)

Ultimately it’s about instilling a sense of empowerment as what was previously
a “magic box”, something you ought not to tamper with, becomes a platform
for actively re-imagining / rethinking what computers and software can be.

5

Aymeric

There, were, however a number of issues:

• Since we used Gentoo as our standard distribution, Gentoo quirks and
were falsely perceived as Linux and Open Source quirks.

• Laptops and their complete driver support through the Linux kernel were
a problem, and still are a problem.

• The tech barriers and learning curves are high, particularly for students
trained in graphic design Bachelor programs.

• Students who professionally work as graphic designers will still need their
proprietary tools. A graphic designer will continue to work with InDesign
for non-generative design of printed matters for this reason.

• Issue Magazine: Alexandre Leray, Stephanie Vilayphiou; interview with
David Reinfurt addressed the problems of open source graphic design)

• Peer to peer design strategies: Emanuele Bonetti

These issues are less pronounced for web-based work. Linux and FLOSS are the
software that drives the Internet. If students develop web applications, then this
is the technology they need to learn as media designers and artists.

Florian

We fully switched to GNU/Linux when we decided that in a media study program
computers are instruments much like musical instruments in a conservatory. Just
as every music student brings their own instrument, we asked every student to
bring their own laptop to the course, and provided Linux installation support. In
that year, Linux broke through as operating system used by our students - and
not just by staff - because it ran on all machines no matter whether originally
designed for Mac OS or Windows. As a lingua franca, it allowed our students to
better exchange knowledge and help each other. We also got a whole generation
of students who appreciated Linux for actually being different, instead of just
claiming to “think different”.

Aymeric

Some details: (images)

• Wiki-based code cookbook - made from in-house knowledge and inspired
recipes from sources such as ThinkPython.

• Wiki-based planning of the course content and direction - from thematic
project to the writing of this paper.

6

• Wiki-based sandbox for the students - essay drafts, notes during tutorials,
assignments.

• Distributed version control for the code developed by the second years -
we use Git.

• Dual boot or single boot to GNU/Linux for students - we use Ubuntu
for its practical advantages over less desktop-friendly distros, but actively
encourage our students to break it apart, remove bloat and customize their
system later on.

• 2 Debian servers with SSH accounts for all students - servers are used as
networked sandboxes and production hosts for their code.

• university-hosted web site/blog for news on the study programme, and
self-hosted blogs for student research projects.

• Free software licensing - we recommend to use GPLv3 and AGPLv3 for
their projects, next the common set of free culture licenses available, but
we obviously let the students choose for themselves.

Concluding Example: Shahee Ilyas, Framing Leaders
• Framing Leaders: Shahee Ilyas

Shahee scraped data from Wikipedia pages, an visualized the length of time
leaders have been in office by the width of their frame (the longer in power, the
larger the frame). At the time of the final exhibition, Maumoon Gayoom, the
leader of the Maldives was in the third position (having been in power since
1978). In 2008, Gayoom lost the presidential election.

• Wikipedia edit, Shehee Ilyas

Also: [1], as an example of how a simple assignment (make an edit on Wikipedia)
lead Shahee to upload a personal picture (which he took from the cockpit of
a plane once when returning home) on to the page of the Maldives; I believe
the positive reponse to the picture (to judge by its history of use in Wikipedia)
helped contribute to Shahee’s interest in working with Wikipedia data in his
final project.

• Early course assignment to make an edit on Wikipedia.
• Shahee, chose to upload an image he shot from the cockpit of an airplane
when he was returning home to the Maldives.

• He posted the image using a Creative Common license.
• Through the wikipedia interface one can trace the history – including its

being selected as a “featured image” by several different wikipedia language
communities.

7

http://en.wikipedia.org/wiki/File:Male-total.jpg#filehistory

Translating FLOSS into the School Context (Conclusions)

Florian

A school is not an open-source project, nevertheless good lessons can be learned
from open-source development:

Michael

• Pipeline: the power of novel connections
• Design isn’t about slickness and seamlessness, but about systems

Aymeric

• ‘Release early, release often’: communicate, release, document and archive
what you do using free culture licenses

• Don’t mystify creation
• Do not design from scratch, but reuse work - ‘Dwarfs standing on the

shoulders of giants’
• Week project collaboration outside the institution

Florian

These are not only good principles for advanced art school education, but also
very healthy recipes for the art world in general.

Bibliography
• Lawrence Liang, A Guide to Open Content Licenses, Piet Zwart Institute
and de Waag, Rotterdam and Amsterdam 2004

• Freestyle - FLOSS in Design, workshop by the Piet Zwart Institute, 2004,
transcripts on http://pzwart.wdka.hro.nl/mdr/Seminars2/freestyletrans1/
view + http://pzwart.wdka.hro.nl/mdr/Seminars2/freestyletrans2/view

• FLOSS+Art. Ed. Aymeric Mansoux, Marloes de Valk, Openmute, London
2008 (PDF: http://people.makeart.goto10.org)

• Tools to fight boredom. Marloes de Valk, in Volume 28, Issue 1, 2009
of the Contemporary Music Review. Ed. Nick Collins and Andrew R.
Brown, Routlegdge, London 2009 (pre-typeset version: http://pi.kuri.mu/
tools-to-fight-boredom)

• Rock, Paper, Scissors and Floppy Disks. Anne Laforet, Aymeric Mansoux,
Marloes de Valk, in Archive 2020. Sustainable archiving of born digital
cultural content. Ed. Annet Dekker, Virtueel Platform, Amsterdam 2010
(pre-typeset version: http://pi.kuri.mu/rock)

8

http://pzwart.wdka.hro.nl/mdr/Seminars2/freestyletrans1/view
http://pzwart.wdka.hro.nl/mdr/Seminars2/freestyletrans1/view
http://pzwart.wdka.hro.nl/mdr/Seminars2/freestyletrans2/view
http://people.makeart.goto10.org
http://pi.kuri.mu/tools-to-fight-boredom
http://pi.kuri.mu/tools-to-fight-boredom
http://pi.kuri.mu/rock

• Florian Cramer, Free Software as Collaborative Text (2000), in: Sarai
Reader 01, The Public Domain, New Delhi/Amsterdam 2001, p. 199-206

9

The	GNU	Manifesto
Type Web	Page

Author Stallman	Richard
URL https://www.gnu.org/gnu/manifesto.html

Accessed 10/26/2016,	8:19:24	AM
Date	Added 10/26/2016,	8:19:24	AM
Modified 10/26/2016,	8:31:40	AM

Attachments

Snapshot

The	GNU	Manifesto
The	GNU	Manifesto	(which	appears	below)	was	written	by	Richard	Stallman	in	1985	to	ask	for	support	in
developing	the	GNU	operating	system.	Part	of	the	text	was	taken	from	the	original	announcement	of	1983.
Through	1987,	it	was	updated	in	minor	ways	to	account	for	developments;	since	then,	it	seems	best	to	leave	it
unchanged.

Since	that	time,	we	have	learned	about	certain	common	misunderstandings	that	different	wording	could	help
avoid.	Footnotes	added	since	1993	help	clarify	these	points.

If	you	want	to	install	the	GNU/Linux	system,	we	recommend	you	use	one	of	the	100%	free	software	GNU/Linux
distributions.	For	how	to	contribute,	see	http://www.gnu.org/help.

The	GNU	Project	is	part	of	the	Free	Software	Movement,	a	campaign	for	freedom	for	users	of	software.	It	is	a
mistake	to	associate	GNU	with	the	term	“open	source”—that	term	was	coined	in	1998	by	people	who	disagree
with	the	Free	Software	Movement's	ethical	values.	They	use	it	to	promote	an	amoral	approach	to	the	same	field.

What's	GNU?	Gnu's	Not	Unix!

GNU,	which	stands	for	Gnu's	Not	Unix,	is	the	name	for	the	complete	Unix-compatible	software	system	which	I	am
writing	so	that	I	can	give	it	away	free	to	everyone	who	can	use	it.(1)	Several	other	volunteers	are	helping	me.
Contributions	of	time,	money,	programs	and	equipment	are	greatly	needed.

So	far	we	have	an	Emacs	text	editor	with	Lisp	for	writing	editor	commands,	a	source	level	debugger,	a	yacc-
compatible	parser	generator,	a	linker,	and	around	35	utilities.	A	shell	(command	interpreter)	is	nearly
completed.	A	new	portable	optimizing	C	compiler	has	compiled	itself	and	may	be	released	this	year.	An	initial
kernel	exists	but	many	more	features	are	needed	to	emulate	Unix.	When	the	kernel	and	compiler	are	finished,	it
will	be	possible	to	distribute	a	GNU	system	suitable	for	program	development.	We	will	use	TeX	as	our	text
formatter,	but	an	nroff	is	being	worked	on.	We	will	use	the	free,	portable	X	Window	System	as	well.	After	this	we
will	add	a	portable	Common	Lisp,	an	Empire	game,	a	spreadsheet,	and	hundreds	of	other	things,	plus	online
documentation.	We	hope	to	supply,	eventually,	everything	useful	that	normally	comes	with	a	Unix	system,	and
more.

GNU	will	be	able	to	run	Unix	programs,	but	will	not	be	identical	to	Unix.	We	will	make	all	improvements	that	are
convenient,	based	on	our	experience	with	other	operating	systems.	In	particular,	we	plan	to	have	longer	file
names,	file	version	numbers,	a	crashproof	file	system,	file	name	completion	perhaps,	terminal-independent
display	support,	and	perhaps	eventually	a	Lisp-based	window	system	through	which	several	Lisp	programs	and
ordinary	Unix	programs	can	share	a	screen.	Both	C	and	Lisp	will	be	available	as	system	programming
languages.	We	will	try	to	support	UUCP,	MIT	Chaosnet,	and	Internet	protocols	for	communication.

GNU	is	aimed	initially	at	machines	in	the	68000/16000	class	with	virtual	memory,	because	they	are	the	easiest
machines	to	make	it	run	on.	The	extra	effort	to	make	it	run	on	smaller	machines	will	be	left	to	someone	who
wants	to	use	it	on	them.

To	avoid	horrible	confusion,	please	pronounce	the	g	in	the	word	“GNU”	when	it	is	the	name	of	this	project.

Why	I	Must	Write	GNU

I	consider	that	the	Golden	Rule	requires	that	if	I	like	a	program	I	must	share	it	with	other	people	who	like	it.
Software	sellers	want	to	divide	the	users	and	conquer	them,	making	each	user	agree	not	to	share	with	others.	I
refuse	to	break	solidarity	with	other	users	in	this	way.	I	cannot	in	good	conscience	sign	a	nondisclosure
agreement	or	a	software	license	agreement.	For	years	I	worked	within	the	Artificial	Intelligence	Lab	to	resist
such	tendencies	and	other	inhospitalities,	but	eventually	they	had	gone	too	far:	I	could	not	remain	in	an
institution	where	such	things	are	done	for	me	against	my	will.

So	that	I	can	continue	to	use	computers	without	dishonor,	I	have	decided	to	put	together	a	sufficient	body	of
free	software	so	that	I	will	be	able	to	get	along	without	any	software	that	is	not	free.	I	have	resigned	from	the	AI
Lab	to	deny	MIT	any	legal	excuse	to	prevent	me	from	giving	GNU	away.(2)

Why	GNU	Will	Be	Compatible	with	Unix

Unix	is	not	my	ideal	system,	but	it	is	not	too	bad.	The	essential	features	of	Unix	seem	to	be	good	ones,	and	I
think	I	can	fill	in	what	Unix	lacks	without	spoiling	them.	And	a	system	compatible	with	Unix	would	be	convenient
for	many	other	people	to	adopt.

How	GNU	Will	Be	Available

GNU	is	not	in	the	public	domain.	Everyone	will	be	permitted	to	modify	and	redistribute	GNU,	but	no	distributor
will	be	allowed	to	restrict	its	further	redistribution.	That	is	to	say,	proprietary	modifications	will	not	be	allowed.
I	want	to	make	sure	that	all	versions	of	GNU	remain	free.

Why	Many	Other	Programmers	Want	to	Help

I	have	found	many	other	programmers	who	are	excited	about	GNU	and	want	to	help.

Many	programmers	are	unhappy	about	the	commercialization	of	system	software.	It	may	enable	them	to	make
more	money,	but	it	requires	them	to	feel	in	conflict	with	other	programmers	in	general	rather	than	feel	as
comrades.	The	fundamental	act	of	friendship	among	programmers	is	the	sharing	of	programs;	marketing
arrangements	now	typically	used	essentially	forbid	programmers	to	treat	others	as	friends.	The	purchaser	of
software	must	choose	between	friendship	and	obeying	the	law.	Naturally,	many	decide	that	friendship	is	more
important.	But	those	who	believe	in	law	often	do	not	feel	at	ease	with	either	choice.	They	become	cynical	and
think	that	programming	is	just	a	way	of	making	money.

By	working	on	and	using	GNU	rather	than	proprietary	programs,	we	can	be	hospitable	to	everyone	and	obey
the	law.	In	addition,	GNU	serves	as	an	example	to	inspire	and	a	banner	to	rally	others	to	join	us	in	sharing.	This
can	give	us	a	feeling	of	harmony	which	is	impossible	if	we	use	software	that	is	not	free.	For	about	half	the
programmers	I	talk	to,	this	is	an	important	happiness	that	money	cannot	replace.

How	You	Can	Contribute

(Nowadays,	for	software	tasks	to	work	on,	see	the	High	Priority	Projects	list	and	the	GNU	Help	Wanted
list,	the	general	task	list	for	GNU	software	packages.	For	other	ways	to	help,	see	the	guide	to	helping
the	GNU	operating	system.)

I	am	asking	computer	manufacturers	for	donations	of	machines	and	money.	I'm	asking	individuals	for	donations
of	programs	and	work.

One	consequence	you	can	expect	if	you	donate	machines	is	that	GNU	will	run	on	them	at	an	early	date.	The
machines	should	be	complete,	ready	to	use	systems,	approved	for	use	in	a	residential	area,	and	not	in	need	of
sophisticated	cooling	or	power.

I	have	found	very	many	programmers	eager	to	contribute	part-time	work	for	GNU.	For	most	projects,	such	part-
time	distributed	work	would	be	very	hard	to	coordinate;	the	independently	written	parts	would	not	work
together.	But	for	the	particular	task	of	replacing	Unix,	this	problem	is	absent.	A	complete	Unix	system	contains
hundreds	of	utility	programs,	each	of	which	is	documented	separately.	Most	interface	specifications	are	fixed	by
Unix	compatibility.	If	each	contributor	can	write	a	compatible	replacement	for	a	single	Unix	utility,	and	make	it
work	properly	in	place	of	the	original	on	a	Unix	system,	then	these	utilities	will	work	right	when	put	together.
Even	allowing	for	Murphy	to	create	a	few	unexpected	problems,	assembling	these	components	will	be	a	feasible
task.	(The	kernel	will	require	closer	communication	and	will	be	worked	on	by	a	small,	tight	group.)

If	I	get	donations	of	money,	I	may	be	able	to	hire	a	few	people	full	or	part	time.	The	salary	won't	be	high	by
programmers'	standards,	but	I'm	looking	for	people	for	whom	building	community	spirit	is	as	important	as
making	money.	I	view	this	as	a	way	of	enabling	dedicated	people	to	devote	their	full	energies	to	working	on	GNU
by	sparing	them	the	need	to	make	a	living	in	another	way.

Why	All	Computer	Users	Will	Benefit

Once	GNU	is	written,	everyone	will	be	able	to	obtain	good	system	software	free,	just	like	air.(3)

This	means	much	more	than	just	saving	everyone	the	price	of	a	Unix	license.	It	means	that	much	wasteful
duplication	of	system	programming	effort	will	be	avoided.	This	effort	can	go	instead	into	advancing	the	state	of
the	art.

Complete	system	sources	will	be	available	to	everyone.	As	a	result,	a	user	who	needs	changes	in	the	system	will
always	be	free	to	make	them	himself,	or	hire	any	available	programmer	or	company	to	make	them	for	him.	Users
will	no	longer	be	at	the	mercy	of	one	programmer	or	company	which	owns	the	sources	and	is	in	sole	position	to
make	changes.

Schools	will	be	able	to	provide	a	much	more	educational	environment	by	encouraging	all	students	to	study	and
improve	the	system	code.	Harvard's	computer	lab	used	to	have	the	policy	that	no	program	could	be	installed	on
the	system	if	its	sources	were	not	on	public	display,	and	upheld	it	by	actually	refusing	to	install	certain
programs.	I	was	very	much	inspired	by	this.

Finally,	the	overhead	of	considering	who	owns	the	system	software	and	what	one	is	or	is	not	entitled	to	do	with
it	will	be	lifted.

Arrangements	to	make	people	pay	for	using	a	program,	including	licensing	of	copies,	always	incur	a
tremendous	cost	to	society	through	the	cumbersome	mechanisms	necessary	to	figure	out	how	much	(that	is,
which	programs)	a	person	must	pay	for.	And	only	a	police	state	can	force	everyone	to	obey	them.	Consider	a
space	station	where	air	must	be	manufactured	at	great	cost:	charging	each	breather	per	liter	of	air	may	be	fair,
but	wearing	the	metered	gas	mask	all	day	and	all	night	is	intolerable	even	if	everyone	can	afford	to	pay	the	air
bill.	And	the	TV	cameras	everywhere	to	see	if	you	ever	take	the	mask	off	are	outrageous.	It's	better	to	support
the	air	plant	with	a	head	tax	and	chuck	the	masks.

Copying	all	or	parts	of	a	program	is	as	natural	to	a	programmer	as	breathing,	and	as	productive.	It	ought	to	be

as	free.

Some	Easily	Rebutted	Objections	to	GNU's	Goals

“Nobody	will	use	it	if	it	is	free,	because	that	means	they	can't	rely	on	any	support.”

“You	have	to	charge	for	the	program	to	pay	for	providing	the	support.”

If	people	would	rather	pay	for	GNU	plus	service	than	get	GNU	free	without	service,	a	company	to	provide	just
service	to	people	who	have	obtained	GNU	free	ought	to	be	profitable.(4)

We	must	distinguish	between	support	in	the	form	of	real	programming	work	and	mere	handholding.	The	former
is	something	one	cannot	rely	on	from	a	software	vendor.	If	your	problem	is	not	shared	by	enough	people,	the
vendor	will	tell	you	to	get	lost.

If	your	business	needs	to	be	able	to	rely	on	support,	the	only	way	is	to	have	all	the	necessary	sources	and	tools.
Then	you	can	hire	any	available	person	to	fix	your	problem;	you	are	not	at	the	mercy	of	any	individual.	With
Unix,	the	price	of	sources	puts	this	out	of	consideration	for	most	businesses.	With	GNU	this	will	be	easy.	It	is
still	possible	for	there	to	be	no	available	competent	person,	but	this	problem	cannot	be	blamed	on	distribution
arrangements.	GNU	does	not	eliminate	all	the	world's	problems,	only	some	of	them.

Meanwhile,	the	users	who	know	nothing	about	computers	need	handholding:	doing	things	for	them	which	they
could	easily	do	themselves	but	don't	know	how.

Such	services	could	be	provided	by	companies	that	sell	just	handholding	and	repair	service.	If	it	is	true	that
users	would	rather	spend	money	and	get	a	product	with	service,	they	will	also	be	willing	to	buy	the	service
having	got	the	product	free.	The	service	companies	will	compete	in	quality	and	price;	users	will	not	be	tied	to
any	particular	one.	Meanwhile,	those	of	us	who	don't	need	the	service	should	be	able	to	use	the	program
without	paying	for	the	service.

“You	cannot	reach	many	people	without	advertising,	and	you	must	charge	for	the	program	to	support
that.”

“It's	no	use	advertising	a	program	people	can	get	free.”

There	are	various	forms	of	free	or	very	cheap	publicity	that	can	be	used	to	inform	numbers	of	computer	users
about	something	like	GNU.	But	it	may	be	true	that	one	can	reach	more	microcomputer	users	with	advertising.	If
this	is	really	so,	a	business	which	advertises	the	service	of	copying	and	mailing	GNU	for	a	fee	ought	to	be
successful	enough	to	pay	for	its	advertising	and	more.	This	way,	only	the	users	who	benefit	from	the	advertising
pay	for	it.

On	the	other	hand,	if	many	people	get	GNU	from	their	friends,	and	such	companies	don't	succeed,	this	will	show
that	advertising	was	not	really	necessary	to	spread	GNU.	Why	is	it	that	free	market	advocates	don't	want	to	let
the	free	market	decide	this?(5)

“My	company	needs	a	proprietary	operating	system	to	get	a	competitive	edge.”

GNU	will	remove	operating	system	software	from	the	realm	of	competition.	You	will	not	be	able	to	get	an	edge
in	this	area,	but	neither	will	your	competitors	be	able	to	get	an	edge	over	you.	You	and	they	will	compete	in
other	areas,	while	benefiting	mutually	in	this	one.	If	your	business	is	selling	an	operating	system,	you	will	not
like	GNU,	but	that's	tough	on	you.	If	your	business	is	something	else,	GNU	can	save	you	from	being	pushed	into
the	expensive	business	of	selling	operating	systems.

I	would	like	to	see	GNU	development	supported	by	gifts	from	many	manufacturers	and	users,	reducing	the	cost
to	each.(6)

“Don't	programmers	deserve	a	reward	for	their	creativity?”

If	anything	deserves	a	reward,	it	is	social	contribution.	Creativity	can	be	a	social	contribution,	but	only	in	so	far
as	society	is	free	to	use	the	results.	If	programmers	deserve	to	be	rewarded	for	creating	innovative	programs,
by	the	same	token	they	deserve	to	be	punished	if	they	restrict	the	use	of	these	programs.

“Shouldn't	a	programmer	be	able	to	ask	for	a	reward	for	his	creativity?”

There	is	nothing	wrong	with	wanting	pay	for	work,	or	seeking	to	maximize	one's	income,	as	long	as	one	does
not	use	means	that	are	destructive.	But	the	means	customary	in	the	field	of	software	today	are	based	on
destruction.

Extracting	money	from	users	of	a	program	by	restricting	their	use	of	it	is	destructive	because	the	restrictions
reduce	the	amount	and	the	ways	that	the	program	can	be	used.	This	reduces	the	amount	of	wealth	that
humanity	derives	from	the	program.	When	there	is	a	deliberate	choice	to	restrict,	the	harmful	consequences
are	deliberate	destruction.

The	reason	a	good	citizen	does	not	use	such	destructive	means	to	become	wealthier	is	that,	if	everyone	did	so,
we	would	all	become	poorer	from	the	mutual	destructiveness.	This	is	Kantian	ethics;	or,	the	Golden	Rule.	Since	I

do	not	like	the	consequences	that	result	if	everyone	hoards	information,	I	am	required	to	consider	it	wrong	for
one	to	do	so.	Specifically,	the	desire	to	be	rewarded	for	one's	creativity	does	not	justify	depriving	the	world	in
general	of	all	or	part	of	that	creativity.

“Won't	programmers	starve?”

I	could	answer	that	nobody	is	forced	to	be	a	programmer.	Most	of	us	cannot	manage	to	get	any	money	for
standing	on	the	street	and	making	faces.	But	we	are	not,	as	a	result,	condemned	to	spend	our	lives	standing	on
the	street	making	faces,	and	starving.	We	do	something	else.

But	that	is	the	wrong	answer	because	it	accepts	the	questioner's	implicit	assumption:	that	without	ownership
of	software,	programmers	cannot	possibly	be	paid	a	cent.	Supposedly	it	is	all	or	nothing.

The	real	reason	programmers	will	not	starve	is	that	it	will	still	be	possible	for	them	to	get	paid	for
programming;	just	not	paid	as	much	as	now.

Restricting	copying	is	not	the	only	basis	for	business	in	software.	It	is	the	most	common	basis(7)	because	it
brings	in	the	most	money.	If	it	were	prohibited,	or	rejected	by	the	customer,	software	business	would	move	to
other	bases	of	organization	which	are	now	used	less	often.	There	are	always	numerous	ways	to	organize	any
kind	of	business.

Probably	programming	will	not	be	as	lucrative	on	the	new	basis	as	it	is	now.	But	that	is	not	an	argument
against	the	change.	It	is	not	considered	an	injustice	that	sales	clerks	make	the	salaries	that	they	now	do.	If
programmers	made	the	same,	that	would	not	be	an	injustice	either.	(In	practice	they	would	still	make
considerably	more	than	that.)

“Don't	people	have	a	right	to	control	how	their	creativity	is	used?”

“Control	over	the	use	of	one's	ideas”	really	constitutes	control	over	other	people's	lives;	and	it	is	usually	used	to
make	their	lives	more	difficult.

People	who	have	studied	the	issue	of	intellectual	property	rights(8)	carefully	(such	as	lawyers)	say	that	there	is
no	intrinsic	right	to	intellectual	property.	The	kinds	of	supposed	intellectual	property	rights	that	the
government	recognizes	were	created	by	specific	acts	of	legislation	for	specific	purposes.

For	example,	the	patent	system	was	established	to	encourage	inventors	to	disclose	the	details	of	their
inventions.	Its	purpose	was	to	help	society	rather	than	to	help	inventors.	At	the	time,	the	life	span	of	17	years
for	a	patent	was	short	compared	with	the	rate	of	advance	of	the	state	of	the	art.	Since	patents	are	an	issue	only
among	manufacturers,	for	whom	the	cost	and	effort	of	a	license	agreement	are	small	compared	with	setting	up
production,	the	patents	often	do	not	do	much	harm.	They	do	not	obstruct	most	individuals	who	use	patented
products.

The	idea	of	copyright	did	not	exist	in	ancient	times,	when	authors	frequently	copied	other	authors	at	length	in
works	of	nonfiction.	This	practice	was	useful,	and	is	the	only	way	many	authors'	works	have	survived	even	in
part.	The	copyright	system	was	created	expressly	for	the	purpose	of	encouraging	authorship.	In	the	domain	for
which	it	was	invented—books,	which	could	be	copied	economically	only	on	a	printing	press—it	did	little	harm,
and	did	not	obstruct	most	of	the	individuals	who	read	the	books.

All	intellectual	property	rights	are	just	licenses	granted	by	society	because	it	was	thought,	rightly	or	wrongly,
that	society	as	a	whole	would	benefit	by	granting	them.	But	in	any	particular	situation,	we	have	to	ask:	are	we
really	better	off	granting	such	license?	What	kind	of	act	are	we	licensing	a	person	to	do?

The	case	of	programs	today	is	very	different	from	that	of	books	a	hundred	years	ago.	The	fact	that	the	easiest
way	to	copy	a	program	is	from	one	neighbor	to	another,	the	fact	that	a	program	has	both	source	code	and
object	code	which	are	distinct,	and	the	fact	that	a	program	is	used	rather	than	read	and	enjoyed,	combine	to
create	a	situation	in	which	a	person	who	enforces	a	copyright	is	harming	society	as	a	whole	both	materially	and
spiritually;	in	which	a	person	should	not	do	so	regardless	of	whether	the	law	enables	him	to.

“Competition	makes	things	get	done	better.”

The	paradigm	of	competition	is	a	race:	by	rewarding	the	winner,	we	encourage	everyone	to	run	faster.	When
capitalism	really	works	this	way,	it	does	a	good	job;	but	its	defenders	are	wrong	in	assuming	it	always	works
this	way.	If	the	runners	forget	why	the	reward	is	offered	and	become	intent	on	winning,	no	matter	how,	they
may	find	other	strategies—such	as,	attacking	other	runners.	If	the	runners	get	into	a	fist	fight,	they	will	all
finish	late.

Proprietary	and	secret	software	is	the	moral	equivalent	of	runners	in	a	fist	fight.	Sad	to	say,	the	only	referee
we've	got	does	not	seem	to	object	to	fights;	he	just	regulates	them	(“For	every	ten	yards	you	run,	you	can	fire
one	shot”).	He	really	ought	to	break	them	up,	and	penalize	runners	for	even	trying	to	fight.

“Won't	everyone	stop	programming	without	a	monetary	incentive?”

Actually,	many	people	will	program	with	absolutely	no	monetary	incentive.	Programming	has	an	irresistible
fascination	for	some	people,	usually	the	people	who	are	best	at	it.	There	is	no	shortage	of	professional
musicians	who	keep	at	it	even	though	they	have	no	hope	of	making	a	living	that	way.

But	really	this	question,	though	commonly	asked,	is	not	appropriate	to	the	situation.	Pay	for	programmers	will
not	disappear,	only	become	less.	So	the	right	question	is,	will	anyone	program	with	a	reduced	monetary
incentive?	My	experience	shows	that	they	will.

For	more	than	ten	years,	many	of	the	world's	best	programmers	worked	at	the	Artificial	Intelligence	Lab	for	far
less	money	than	they	could	have	had	anywhere	else.	They	got	many	kinds	of	nonmonetary	rewards:	fame	and
appreciation,	for	example.	And	creativity	is	also	fun,	a	reward	in	itself.

Then	most	of	them	left	when	offered	a	chance	to	do	the	same	interesting	work	for	a	lot	of	money.

What	the	facts	show	is	that	people	will	program	for	reasons	other	than	riches;	but	if	given	a	chance	to	make	a
lot	of	money	as	well,	they	will	come	to	expect	and	demand	it.	Low-paying	organizations	do	poorly	in	competition
with	high-paying	ones,	but	they	do	not	have	to	do	badly	if	the	high-paying	ones	are	banned.

“We	need	the	programmers	desperately.	If	they	demand	that	we	stop	helping	our	neighbors,	we	have
to	obey.”

You're	never	so	desperate	that	you	have	to	obey	this	sort	of	demand.	Remember:	millions	for	defense,	but	not	a
cent	for	tribute!

“Programmers	need	to	make	a	living	somehow.”

In	the	short	run,	this	is	true.	However,	there	are	plenty	of	ways	that	programmers	could	make	a	living	without
selling	the	right	to	use	a	program.	This	way	is	customary	now	because	it	brings	programmers	and	businessmen
the	most	money,	not	because	it	is	the	only	way	to	make	a	living.	It	is	easy	to	find	other	ways	if	you	want	to	find
them.	Here	are	a	number	of	examples.

A	manufacturer	introducing	a	new	computer	will	pay	for	the	porting	of	operating	systems	onto	the	new
hardware.

The	sale	of	teaching,	handholding	and	maintenance	services	could	also	employ	programmers.

People	with	new	ideas	could	distribute	programs	as	freeware(9),	asking	for	donations	from	satisfied	users,	or
selling	handholding	services.	I	have	met	people	who	are	already	working	this	way	successfully.

Users	with	related	needs	can	form	users'	groups,	and	pay	dues.	A	group	would	contract	with	programming
companies	to	write	programs	that	the	group's	members	would	like	to	use.

All	sorts	of	development	can	be	funded	with	a	Software	Tax:

Suppose	everyone	who	buys	a	computer	has	to	pay	x	percent	of	the	price	as	a	software	tax.	The	government
gives	this	to	an	agency	like	the	NSF	to	spend	on	software	development.

But	if	the	computer	buyer	makes	a	donation	to	software	development	himself,	he	can	take	a	credit	against	the
tax.	He	can	donate	to	the	project	of	his	own	choosing—often,	chosen	because	he	hopes	to	use	the	results	when
it	is	done.	He	can	take	a	credit	for	any	amount	of	donation	up	to	the	total	tax	he	had	to	pay.

The	total	tax	rate	could	be	decided	by	a	vote	of	the	payers	of	the	tax,	weighted	according	to	the	amount	they
will	be	taxed	on.

The	consequences:

The	computer-using	community	supports	software	development.
This	community	decides	what	level	of	support	is	needed.
Users	who	care	which	projects	their	share	is	spent	on	can	choose	this	for	themselves.

In	the	long	run,	making	programs	free	is	a	step	toward	the	postscarcity	world,	where	nobody	will	have	to	work
very	hard	just	to	make	a	living.	People	will	be	free	to	devote	themselves	to	activities	that	are	fun,	such	as
programming,	after	spending	the	necessary	ten	hours	a	week	on	required	tasks	such	as	legislation,	family
counseling,	robot	repair	and	asteroid	prospecting.	There	will	be	no	need	to	be	able	to	make	a	living	from
programming.

We	have	already	greatly	reduced	the	amount	of	work	that	the	whole	society	must	do	for	its	actual	productivity,
but	only	a	little	of	this	has	translated	itself	into	leisure	for	workers	because	much	nonproductive	activity	is
required	to	accompany	productive	activity.	The	main	causes	of	this	are	bureaucracy	and	isometric	struggles
against	competition.	Free	software	will	greatly	reduce	these	drains	in	the	area	of	software	production.	We	must
do	this,	in	order	for	technical	gains	in	productivity	to	translate	into	less	work	for	us.

Footnotes

1.	 The	wording	here	was	careless.	The	intention	was	that	nobody	would	have	to	pay	for	permission	to	use
the	GNU	system.	But	the	words	don't	make	this	clear,	and	people	often	interpret	them	as	saying	that
copies	of	GNU	should	always	be	distributed	at	little	or	no	charge.	That	was	never	the	intent;	later	on,	the
manifesto	mentions	the	possibility	of	companies	providing	the	service	of	distribution	for	a	profit.
Subsequently	I	have	learned	to	distinguish	carefully	between	“free”	in	the	sense	of	freedom	and	“free”	in

the	sense	of	price.	Free	software	is	software	that	users	have	the	freedom	to	distribute	and	change.	Some
users	may	obtain	copies	at	no	charge,	while	others	pay	to	obtain	copies—and	if	the	funds	help	support
improving	the	software,	so	much	the	better.	The	important	thing	is	that	everyone	who	has	a	copy	has	the
freedom	to	cooperate	with	others	in	using	it.

2.	 The	expression	“give	away”	is	another	indication	that	I	had	not	yet	clearly	separated	the	issue	of	price	from
that	of	freedom.	We	now	recommend	avoiding	this	expression	when	talking	about	free	software.	See
“Confusing	Words	and	Phrases”	for	more	explanation.

3.	 This	is	another	place	I	failed	to	distinguish	carefully	between	the	two	different	meanings	of	“free”.	The
statement	as	it	stands	is	not	false—you	can	get	copies	of	GNU	software	at	no	charge,	from	your	friends	or
over	the	net.	But	it	does	suggest	the	wrong	idea.

4.	 Several	such	companies	now	exist.
5.	 Although	it	is	a	charity	rather	than	a	company,	the	Free	Software	Foundation	for	10	years	raised	most	of	its

funds	from	its	distribution	service.	You	can	order	things	from	the	FSF	to	support	its	work.
6.	 A	group	of	computer	companies	pooled	funds	around	1991	to	support	maintenance	of	the	GNU	C	Compiler.
7.	 I	think	I	was	mistaken	in	saying	that	proprietary	software	was	the	most	common	basis	for	making	money	in

software.	It	seems	that	actually	the	most	common	business	model	was	and	is	development	of	custom
software.	That	does	not	offer	the	possibility	of	collecting	rents,	so	the	business	has	to	keep	doing	real
work	in	order	to	keep	getting	income.	The	custom	software	business	would	continue	to	exist,	more	or	less
unchanged,	in	a	free	software	world.	Therefore,	I	no	longer	expect	that	most	paid	programmers	would
earn	less	in	a	free	software	world.

8.	 In	the	1980s	I	had	not	yet	realized	how	confusing	it	was	to	speak	of	“the	issue”	of	“intellectual	property”.
That	term	is	obviously	biased;	more	subtle	is	the	fact	that	it	lumps	together	various	disparate	laws	which
raise	very	different	issues.	Nowadays	I	urge	people	to	reject	the	term	“intellectual	property”	entirely,	lest	it
lead	others	to	suppose	that	those	laws	form	one	coherent	issue.	The	way	to	be	clear	is	to	discuss	patents,
copyrights,	and	trademarks	separately.	See	further	explanation	of	how	this	term	spreads	confusion	and
bias.

9.	 Subsequently	we	learned	to	distinguish	between	“free	software”	and	“freeware”.	The	term	“freeware”
means	software	you	are	free	to	redistribute,	but	usually	you	are	not	free	to	study	and	change	the	source
code,	so	most	of	it	is	not	free	software.	See	“Confusing	Words	and	Phrases”	for	more	explanation.

	Contents
	How to run an art school on Free Software/Open Source?
	Introduction
	Florian
	Aymeric

	Media Design?
	Michael
	Florian
	Michael
	Aymeric
	Florian

	Networked Media Design
	Florian
	Aymeric
	Florian
	Aymeric

	Under the Hood
	Michael
	Aymeric
	Florian
	Aymeric

	Concluding Example: Shahee Ilyas, Framing Leaders
	Translating FLOSS into the School Context (Conclusions)
	Florian
	Michael
	Aymeric
	Florian

	Bibliography

