
Text processing

Open a .txt file

In [95]: f = open("txt/snippet-2.txt", "r")

In [88]: f

Out[88]: <_io.TextIOWrapper name='txt/snippet-2.txt'
mode='r' encoding='UTF-8'>

In [89]: s = f.read()

In [90]: s

Out[90]: 'What this library is about?\nWhat do you
want to create?\nWhy does gardening matter to
you?\nWhat elements are part of your dream
garden?\nWhat elements are not part of your
dream garden?\nWhat is the first books,
magazines, or publications that immediately
comes to mind when you think of library
produce?\nAre you going to have help from
library members and other people?\nThink
about your specific growing and garden zone.
Do you have a long growing season or a short
one?\nDo you want "crops" you can store for
some months?\nDo you like caring for people
(readers, volunteers, team members)?\nDo you
have a container garden with seeds?\nBeginner
set up recommendations for seeds?\nHow do you
know what to put together? Do you organize by
author, genre, cover color?\nConditions -
sunlight, soil, moisture?\nWhat do we like to
read?\nIs it accessible?'

In [91]: type(s)

Out[91]: str

In [96]: l = f.readlines()

In [97]: l

Out[97]: ['What this library is about?\n',
 'What do you want to create?\n',
 'Why does gardening matter to you?\n',
 'What elements are part of your dream garden
?\n',
 'What elements are not part of your dream
garden?\n',
 'What is the first books, magazines, or
publications that immediately comes to mind
when you think of library produce?\n',
 'Are you going to have help from library
members and other people?\n',
 'Think about your specific growing and
garden zone. Do you have a long growing
season or a short one?\n',
 'Do you want "crops" you can store for some
months?\n',
 'Do you like caring for people (readers,
volunteers, team members)?\n',
 'Do you have a container garden with seeds?
\n',
 'Beginner set up recommendations for seeds?
\n',
 'How do you know what to put together? Do
you organize by author, genre, cover color?
\n',
 'Conditions - sunlight, soil, moisture?\n',
 'What do we like to read?\n',
 'Is it accessible?']

In [98]: type(l)

Out[98]: list

In []:

Opening a folder with .txt files

In [100]: import os

texts = []

folder = "./txt/"

for filename in os.listdir(folder):
 if ".txt" in filename:
 current_file_path = folder + filename
 print(current_file_path)
 print("---")

 txt = open(current_file_path).read()
 print(txt)
 print("===")

 texts.append(txt)

./txt/snippet-2.txt

What this library is about?
What do you want to create?
Why does gardening matter to you?
What elements are part of your dream garden?
What elements are not part of your dream garden?
What is the first books, magazines, or publications
that immediately comes to mind when you think of
library produce?
Are you going to have help from library members and
other people?
Think about your specific growing and garden zone. Do
you have a long growing season or a short one?
Do you want "crops" you can store for some months?
Do you like caring for people (readers, volunteers,
team members)?
Do you have a container garden with seeds?
Beginner set up recommendations for seeds?
How do you know what to put together? Do you organize
by author, genre, cover color?
Conditions - sunlight, soil, moisture?
What do we like to read?
Is it accessible?
===
./txt/snippet-1.txt

When we ask "HOW" we want to know more about methods,
systems, ways to do something. This question is about
the process (or steps) that can lead us to achieving
a certain output. So the answer of this SI's question
might be hidden in the process of gardening. Seeing
"library" and "garden" as intertwined actions, and
gardening as the way we can library something, to
answer the HOW question.
===

In [101]: print(texts)

['What this library is about?\nWhat do you want to
create?\nWhy does gardening matter to you?\nWhat
elements are part of your dream garden?\nWhat
elements are not part of your dream garden?\nWhat is
the first books, magazines, or publications that
immediately comes to mind when you think of library
produce?\nAre you going to have help from library
members and other people?\nThink about your specific
growing and garden zone. Do you have a long growing
season or a short one?\nDo you want "crops" you can
store for some months?\nDo you like caring for people
(readers, volunteers, team members)?\nDo you have a
container garden with seeds?\nBeginner set up
recommendations for seeds?\nHow do you know what to
put together? Do you organize by author, genre, cover
color?\nConditions - sunlight, soil, moisture?\nWhat
do we like to read?\nIs it accessible?', 'When we ask
"HOW" we want to know more about methods, systems,
ways to do something. This question is about the
process (or steps) that can lead us to achieving a
certain output. So the answer of this SI\'s question
might be hidden in the process of gardening. Seeing
"library" and "garden" as intertwined actions, and
gardening as the way we can library something, to
answer the HOW question.']

In []:

From text to words

In [104]: text = texts[1]

In [105]: print(text)

When we ask "HOW" we want to know more about methods,
systems, ways to do something. This question is about
the process (or steps) that can lead us to achieving
a certain output. So the answer of this SI's question
might be hidden in the process of gardening. Seeing
"library" and "garden" as intertwined actions, and
gardening as the way we can library something, to
answer the HOW question.

In [106]: words = text.split()

In [107]: print(words)

['When', 'we', 'ask', '"HOW"', 'we', 'want', 'to',
'know', 'more', 'about', 'methods,', 'systems,',
'ways', 'to', 'do', 'something.', 'This', 'question',
'is', 'about', 'the', 'process', '(or', 'steps)',
'that', 'can', 'lead', 'us', 'to', 'achieving', 'a',
'certain', 'output.', 'So', 'the', 'answer', 'of',
'this', "SI's", 'question', 'might', 'be', 'hidden',
'in', 'the', 'process', 'of', 'gardening.', 'Seeing',
'"library"', 'and', '"garden"', 'as', 'intertwined',
'actions,', 'and', 'gardening', 'as', 'the', 'way',
'we', 'can', 'library', 'something,', 'to', 'answer',
'the', 'HOW', 'question.']

In [108]: for word in words:
 print(word)

When
we
ask
"HOW"
we
want
to
know
more
about
methods,
systems,
ways
to
do
something.
This
question
is
about
the
process
(or
steps)
that
can
lead
us
to
achieving
a
certain
output.
So
the
answer
of
this
SI's
question
might
be
hidden

Using NLTK

word_tokenize

https://www.nltk.org/api/nltk.tokenize.html

In [26]: from nltk.tokenize import word_tokenize

In [27]: words = word_tokenize(texts[0])

--
LookupError Traceback (most recent call last
Cell In [27], line 1
----> 1 word_tokenize(texts[0])

File ~/.local/lib/python3.9/site-packages/nltk/tokenize/__init__.py:129
in word_tokenize(text, language, preserve_line)
 114 def word_tokenize(text, language="english", preserve_line
 115 """
 116 Return a tokenized copy of *text*,
 117 using NLTK's recommended word tokenizer
 (...)
 127 :type preserve_line: bool
 128 """
--> 129 sentences = [text] if preserve_line else sent_tokenize
nguage)
 130 return [
 131 token for sent in sentences for token in
_treebank_word_tokenizer.tokenize(sent)
 132]

File ~/.local/lib/python3.9/site-packages/nltk/tokenize/__init__.py:106
in sent_tokenize(text, language)
 96 def sent_tokenize(text, language="english"):
 97 """
 98 Return a sentence-tokenized copy of *text*,
 99 using NLTK's recommended sentence tokenizer
 (...)
 104 :param language: the model name in the Punkt corpus
 105 """
--> 106 tokenizer = load(f"tokenizers/punkt/{language
 107 return tokenizer.tokenize(text)

File ~/.local/lib/python3.9/site-packages/nltk/data.py:750
ce_url, format, cache, verbose, logic_parser, fstruct_reader, encoding)
 747 print(f"<<Loading {resource_url}>>")
 749 # Load the resource.
--> 750 opened_resource = _open(resource_url)
 752 if format == "raw":
 753 resource_val = opened_resource.read()

File ~/.local/lib/python3.9/site-packages/nltk/data.py:876

In [28]: nltk.download("punkt")

[nltk_data] Downloading package punkt to /home/
manetta/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.

Out[28]: True

In [31]: words = word_tokenize(texts[0])

In [32]: for word in words:
 print(word)

When
we
ask
``
HOW
''
we
want
to
know
more
about
methods
,
systems
,
ways
to
do
something
.
This
question
is
about
the
process
(
or
steps
)
that
can
lead
us
to
achieving
a
certain
output
.
So
the

The downloaded NLTK data is saved in your home folder.

If you want to look into it, you can just open the folder:

In [44]: ! ls ~/nltk_data/

corpora taggers tokenizers

POS (part-of-speech) tagger

https://www.nltk.org/api/nltk.tag.html

In [33]: from nltk import pos_tag, word_tokenize

In [34]: text = texts[0]

In [35]: words = word_tokenize(text)

In [36]: tags = pos_tag(words)

--
LookupError Traceback (most recent call last
Cell In [36], line 1
----> 1 pos_tag(words)

File ~/.local/lib/python3.9/site-packages/nltk/tag/__init__.py:165
_tag(tokens, tagset, lang)
 140 def pos_tag(tokens, tagset=None, lang="eng"):
 141 """
 142 Use NLTK's currently recommended part of speech tagger to
 143 tag the given list of tokens.
 (...)
 163 :rtype: list(tuple(str, str))
 164 """
--> 165 tagger = _get_tagger(lang)
 166 return _pos_tag(tokens, tagset, tagger, lang)

File ~/.local/lib/python3.9/site-packages/nltk/tag/__init__.py:107
t_tagger(lang)
 105 tagger.load(ap_russian_model_loc)
 106 else:
--> 107 tagger = PerceptronTagger()
 108 return tagger

File ~/.local/lib/python3.9/site-packages/nltk/tag/perceptron.py:167
rceptronTagger.__init__(self, load)
 164 self.classes = set()
 165 if load:
 166 AP_MODEL_LOC = "file:" + str(
--> 167 find("taggers/averaged_perceptron_tagger/
 168)
 169 self.load(AP_MODEL_LOC)

File ~/.local/lib/python3.9/site-packages/nltk/data.py:583
ce_name, paths)
 581 sep = "*" * 70
 582 resource_not_found = f"\n{sep}\n{msg}\n{sep}\n"
--> 583 raise LookupError(resource_not_found)

LookupError:
**
 Resource averaged_perceptron_tagger not found.

In [37]: nltk.download('averaged_perceptron_tagger')

[nltk_data] Downloading package
averaged_perceptron_tagger to
[nltk_data] /home/manetta/nltk_data...
[nltk_data] Unzipping taggers/
averaged_perceptron_tagger.zip.

Out[37]: True

In [38]: tags = pos_tag(words)

In [39]: print(tags)

[('When', 'WRB'), ('we', 'PRP'), ('ask', 'VBP'),
('``', '``'), ('HOW', 'NNP'), ("''", "''"), ('we',
'PRP'), ('want', 'VBP'), ('to', 'TO'), ('know',
'VB'), ('more', 'JJR'), ('about', 'IN'), ('methods',
'NNS'), (',', ','), ('systems', 'NNS'), (',', ','),
('ways', 'NNS'), ('to', 'TO'), ('do', 'VB'),
('something', 'NN'), ('.', '.'), ('This', 'DT'),
('question', 'NN'), ('is', 'VBZ'), ('about', 'IN'),
('the', 'DT'), ('process', 'NN'), ('(', '('), ('or',
'CC'), ('steps', 'NNS'), (')', ')'), ('that', 'WDT'),
('can', 'MD'), ('lead', 'VB'), ('us', 'PRP'), ('to',
'TO'), ('achieving', 'VBG'), ('a', 'DT'), ('certain',
'JJ'), ('output', 'NN'), ('.', '.'), ('So', 'IN'),
('the', 'DT'), ('answer', 'NN'), ('of', 'IN'),
('this', 'DT'), ('SI', 'NNP'), ("'s", 'POS'),
('question', 'NN'), ('might', 'MD'), ('be', 'VB'),
('hidden', 'VBN'), ('in', 'IN'), ('the', 'DT'),
('process', 'NN'), ('of', 'IN'), ('gardening', 'NN'),
('.', '.'), ('Seeing', 'VBG'), ('``', '``'),
('library', 'JJ'), ("''", "''"), ('and', 'CC'),
('``', '``'), ('garden', 'NN'), ("''", "''"), ('as',
'IN'), ('intertwined', 'JJ'), ('actions', 'NNS'),
(',', ','), ('and', 'CC'), ('gardening', 'NN'),
('as', 'IN'), ('the', 'DT'), ('way', 'NN'), ('we',
'PRP'), ('can', 'MD'), ('library', 'VB'),
('something', 'NN'), (',', ','), ('to', 'TO'),
('answer', 'VB'), ('the', 'DT'), ('HOW', 'NNP'),
('question', 'NN'), ('.', '.')]

An off-the-shelf tagger is available for English. It uses

the Penn Treebank tagset.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/

penn_treebank_pos.html

The output of the POS tagger is a list of tuples.

A tuple is one of the Python data objects (like the list and string we

saw last time).

A tuple is always a 2 value object, separated with a comma and

wrapped in parantheses: (value, value)

You can loop through a list of tuples in this way:

In [111]: for word, tag in tags:
 print(word)
 print(tag)
 print("---")

When
WRB

we
PRP

ask
VBP

``
``

HOW
NNP

''
''

we
PRP

want
VBP

to
TO

know
VB

more
JJR

about
IN

methods
NNS

,
,

systems

Now you have access to some of the grammar information of

sentences.

We can, for example, store all the verbs in a list.

In [112]: verbs = []

for word, tag in tags:
 if "VB" in tag:
 print(word)
 verbs.append(word)

ask
want
know
do
is
lead
achieving
be
hidden
Seeing
library
answer

In [113]: print(verbs)

['ask', 'want', 'know', 'do', 'is', 'lead',
'achieving', 'be', 'hidden', 'Seeing', 'library',
'answer']

stopwords

In [24]: import nltk

In [40]: nltk.download('stopwords')

[nltk_data] Downloading package stopwords to
[nltk_data] /home/manetta/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.

Out[40]: True

In [48]: ! ls ~/nltk_data/

corpora taggers tokenizers

In [49]: ! ls ~/nltk_data/corpora/

stopwords stopwords.zip

In [52]: ! ls ~/nltk_data/corpora/stopwords/

arabic chinese french hungarian
norwegian slovene
azerbaijani danish german indonesian
portuguese spanish
basque dutch greek italian
README swedish
bengali english hebrew kazakh
romanian tajik
catalan finnish hinglish nepali
russian turkish

In [53]: ! cat ~/nltk_data/corpora/stopwords/english

i
me
my
myself
we
our
ours
ourselves
you
you're
you've
you'll
you'd
your
yours
yourself
yourselves
he
him
his
himself
she
she's
her
hers
herself
it
it's
its
itself
they
them
their
theirs
themselves
what
which
who
whom
this
that
that'll
these

In … stopwords = open("/home/manetta/nltk_data/corpora/
stopwords/english", "r").readlines()

In [57]: print(stopwords)

['i\n', 'me\n', 'my\n', 'myself\n', 'we\n', 'our\n',
'ours\n', 'ourselves\n', 'you\n', "you're\n",
"you've\n", "you'll\n", "you'd\n", 'your\n',
'yours\n', 'yourself\n', 'yourselves\n', 'he\n',
'him\n', 'his\n', 'himself\n', 'she\n', "she's\n",
'her\n', 'hers\n', 'herself\n', 'it\n', "it's\n",
'its\n', 'itself\n', 'they\n', 'them\n', 'their\n',
'theirs\n', 'themselves\n', 'what\n', 'which\n',
'who\n', 'whom\n', 'this\n', 'that\n', "that'll\n",
'these\n', 'those\n', 'am\n', 'is\n', 'are\n',
'was\n', 'were\n', 'be\n', 'been\n', 'being\n',
'have\n', 'has\n', 'had\n', 'having\n', 'do\n',
'does\n', 'did\n', 'doing\n', 'a\n', 'an\n', 'the\n',
'and\n', 'but\n', 'if\n', 'or\n', 'because\n',
'as\n', 'until\n', 'while\n', 'of\n', 'at\n', 'by\n',
'for\n', 'with\n', 'about\n', 'against\n',
'between\n', 'into\n', 'through\n', 'during\n',
'before\n', 'after\n', 'above\n', 'below\n', 'to\n',
'from\n', 'up\n', 'down\n', 'in\n', 'out\n', 'on\n',
'off\n', 'over\n', 'under\n', 'again\n', 'further\n',
'then\n', 'once\n', 'here\n', 'there\n', 'when\n',
'where\n', 'why\n', 'how\n', 'all\n', 'any\n',
'both\n', 'each\n', 'few\n', 'more\n', 'most\n',
'other\n', 'some\n', 'such\n', 'no\n', 'nor\n',
'not\n', 'only\n', 'own\n', 'same\n', 'so\n',
'than\n', 'too\n', 'very\n', 's\n', 't\n', 'can\n',
'will\n', 'just\n', 'don\n', "don't\n", 'should\n',
"should've\n", 'now\n', 'd\n', 'll\n', 'm\n', 'o\n',
're\n', 've\n', 'y\n', 'ain\n', 'aren\n', "aren't\n",
'couldn\n', "couldn't\n", 'didn\n', "didn't\n",
'doesn\n', "doesn't\n", 'hadn\n', "hadn't\n",
'hasn\n', "hasn't\n", 'haven\n', "haven't\n",
'isn\n', "isn't\n", 'ma\n', 'mightn\n', "mightn't\n",
'mustn\n', "mustn't\n", 'needn\n', "needn't\n",
'shan\n', "shan't\n", 'shouldn\n', "shouldn't\n",
'wasn\n', "wasn't\n", 'weren\n', "weren't\n",
'won\n', "won't\n", 'wouldn\n', "wouldn't\n"]

In […stopwords = open("/home/manetta/nltk_data/corpora/
stopwords/english", "r").read()
stopwords = stopwords.split("\n")

In [64]: print(stopwords)

['i', 'me', 'my', 'myself', 'we', 'our', 'ours',
'ourselves', 'you', "you're", "you've", "you'll",
"you'd", 'your', 'yours', 'yourself', 'yourselves',
'he', 'him', 'his', 'himself', 'she', "she's", 'her',
'hers', 'herself', 'it', "it's", 'its', 'itself',
'they', 'them', 'their', 'theirs', 'themselves',
'what', 'which', 'who', 'whom', 'this', 'that',
"that'll", 'these', 'those', 'am', 'is', 'are',
'was', 'were', 'be', 'been', 'being', 'have', 'has',
'had', 'having', 'do', 'does', 'did', 'doing', 'a',
'an', 'the', 'and', 'but', 'if', 'or', 'because',
'as', 'until', 'while', 'of', 'at', 'by', 'for',
'with', 'about', 'against', 'between', 'into',
'through', 'during', 'before', 'after', 'above',
'below', 'to', 'from', 'up', 'down', 'in', 'out',
'on', 'off', 'over', 'under', 'again', 'further',
'then', 'once', 'here', 'there', 'when', 'where',
'why', 'how', 'all', 'any', 'both', 'each', 'few',
'more', 'most', 'other', 'some', 'such', 'no', 'nor',
'not', 'only', 'own', 'same', 'so', 'than', 'too',
'very', 's', 't', 'can', 'will', 'just', 'don',
"don't", 'should', "should've", 'now', 'd', 'll',
'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't",
'couldn', "couldn't", 'didn', "didn't", 'doesn',
"doesn't", 'hadn', "hadn't", 'hasn', "hasn't",
'haven', "haven't", 'isn', "isn't", 'ma', 'mightn',
"mightn't", 'mustn', "mustn't", 'needn', "needn't",
'shan', "shan't", 'shouldn', "shouldn't", 'wasn',
"wasn't", 'weren', "weren't", 'won', "won't",
'wouldn', "wouldn't", '']

In []:

	Text processing
	Open a .txt file
	Opening a folder with .txt files
	From text to words
	Using NLTK
	word_tokenize

	POS (part-of-speech) tagger
	stopwords

